Leptin is mainly secreted by adipocytes and is implicated in the regulation of metabolic status, feed intake, and body condition. Day length (DL) can affect leptin gene expression and secretion. The aim of the study was to evaluate the effect of DL on gene expression of leptin and leptin receptors in adipose tissue (AT). Four lactating and pregnant Holstein cows were housed in a climate-controlled chamber for 51 d. The first 30 d were used to adapt animals to the new housing conditions. During that period the DL adopted was 12 h light:12 h dark (12:12). The experimental period included 3 different and consecutive phases: 7 d of neutral DL (12:12); 7 d of long DL (18 h light:6 h dark); and 7 d of short DL (6 h light:18 h dark). Subcutaneous AT biopsies were performed at the end of each phase. Prolactin, growth hormone, cortisol, leptin, glucose, nonesterified fatty acids, ß-OH-butyrate, and cholesterol were determined in plasma samples. Abundance of leptin mRNA, and Ob-Ra and Ob-Rb leptin receptor mRNA were determined in AT samples by ribonuclease protection assay. Day length did not affect feed intake or body condition score. Exposure to short DL significantly reduced milk yield (13.1 ± 2.2 vs. 15.8 ± 1.7 and 16.0 ± 2.0 kg/d for short vs. neutral and long DL, respectively). Plasma leptin, growth hormone, cortisol, nonesterified fatty acids, ß-OH-butyrate, and glucose were not affected by DL; cholesterol was lowest under short DL (3.93 ± 0.38 vs. 4.36 ± 0.39 and 4.07 ± 0.38 mmol/L for short vs. neutral and long DL, respectively). Prolactin increased under long DL (134.82 ± 16.94 vs. 81.98 ± 20.25 and 96.16 ± 0.38 ng/mL for long vs. neutral and short DL, respectively). Gene expression of leptin and its receptors was affected by DL. Leptin mRNA increased under long DL (11.91 ± 0.84 vs. 7.82 ± 0.84 and 7.56 ± 0.84 pg of mRNA/µg of total RNA for long vs. neutral and short DL, respectively). Leptin receptors Ob-Ra and Ob-Rb mRNA were higher under long DL, whereas Ob-Ra and Ob-Rb mRNA were lower under short DL (Ob-Ra: 1.91 ± 0.41, 2.49 ± 0.41, and 0.65 ± 0.41 pg of mRNA/µg of total RNA for neutral, long, and short DL, respectively; Ob-Rb: 5.29 ± 0.79, 5.98 ± 0.68, and 2.02 ± 0.70 pg of mRNA/µg of total RNA for neutral, long, and short DL, respectively). Results of the present study appear to exclude an effect of feed intake and metabolic status on leptin gene expression. A prolactin-mediated effect of photoperiod on AT leptin modulation may be proposed in lactating dairy cows.
Bernabucci U., Basificò L., Lacetera N., Morera P., Ronchi B., Accorsi P.A., et al. (2006). Photoperiod Affects Gene Expression of Leptin and Leptin Receptors in Adipose Tissue from Lactating Dairy Cows. JOURNAL OF DAIRY SCIENCE, 89, 4678-4686.
Photoperiod Affects Gene Expression of Leptin and Leptin Receptors in Adipose Tissue from Lactating Dairy Cows
ACCORSI, PIER ATTILIO;SEREN, ERALDO;
2006
Abstract
Leptin is mainly secreted by adipocytes and is implicated in the regulation of metabolic status, feed intake, and body condition. Day length (DL) can affect leptin gene expression and secretion. The aim of the study was to evaluate the effect of DL on gene expression of leptin and leptin receptors in adipose tissue (AT). Four lactating and pregnant Holstein cows were housed in a climate-controlled chamber for 51 d. The first 30 d were used to adapt animals to the new housing conditions. During that period the DL adopted was 12 h light:12 h dark (12:12). The experimental period included 3 different and consecutive phases: 7 d of neutral DL (12:12); 7 d of long DL (18 h light:6 h dark); and 7 d of short DL (6 h light:18 h dark). Subcutaneous AT biopsies were performed at the end of each phase. Prolactin, growth hormone, cortisol, leptin, glucose, nonesterified fatty acids, ß-OH-butyrate, and cholesterol were determined in plasma samples. Abundance of leptin mRNA, and Ob-Ra and Ob-Rb leptin receptor mRNA were determined in AT samples by ribonuclease protection assay. Day length did not affect feed intake or body condition score. Exposure to short DL significantly reduced milk yield (13.1 ± 2.2 vs. 15.8 ± 1.7 and 16.0 ± 2.0 kg/d for short vs. neutral and long DL, respectively). Plasma leptin, growth hormone, cortisol, nonesterified fatty acids, ß-OH-butyrate, and glucose were not affected by DL; cholesterol was lowest under short DL (3.93 ± 0.38 vs. 4.36 ± 0.39 and 4.07 ± 0.38 mmol/L for short vs. neutral and long DL, respectively). Prolactin increased under long DL (134.82 ± 16.94 vs. 81.98 ± 20.25 and 96.16 ± 0.38 ng/mL for long vs. neutral and short DL, respectively). Gene expression of leptin and its receptors was affected by DL. Leptin mRNA increased under long DL (11.91 ± 0.84 vs. 7.82 ± 0.84 and 7.56 ± 0.84 pg of mRNA/µg of total RNA for long vs. neutral and short DL, respectively). Leptin receptors Ob-Ra and Ob-Rb mRNA were higher under long DL, whereas Ob-Ra and Ob-Rb mRNA were lower under short DL (Ob-Ra: 1.91 ± 0.41, 2.49 ± 0.41, and 0.65 ± 0.41 pg of mRNA/µg of total RNA for neutral, long, and short DL, respectively; Ob-Rb: 5.29 ± 0.79, 5.98 ± 0.68, and 2.02 ± 0.70 pg of mRNA/µg of total RNA for neutral, long, and short DL, respectively). Results of the present study appear to exclude an effect of feed intake and metabolic status on leptin gene expression. A prolactin-mediated effect of photoperiod on AT leptin modulation may be proposed in lactating dairy cows.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.