Transgenic mice expressing IGFBP-5 in the mammary gland exhibit increased cell death and plasmin generation. Because IGFBP-5 has been reported to bind to plasminogen activator inhibitor- 1 (PAI-1), we determined the effects of this interaction in HC11 cells. PAI-1 prevented plasmin generation from plasminogen and inhibited cleavage of focal adhesions, expression of caspase 3, and cell death. IGFBP-5 could in turn prevent the effects of PAI-1. IGFBP-5 mutants with reduced affinity for IGF-I (N-term) or deficient in heparin binding (HEP and C-term E and F) were also effective. This was surprising because IGFBP-5 reportedly interacts with PAI-1 via its heparin-binding domain. Biosensor analysis confirmed that, although wild-type IGFBP-5 and N-term both bound to PAI-1, the C-term E had greatly decreased interaction with PAI-1. This suggests that IGFBP-5 does not antagonize the actions of PAI-1 by a direct molecular interaction. In a cell-free system, using tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) to activate plasminogen, PAI-1 inhibited plasmin generation induced by both activators, whereas IGFBP-5 prevented the effects of PAI-1 on tPA but not uPA. Furthermore, we noted that IGFBP-5 activated plasminogen to a greater extent than could be explained solely by inhibition of PAI-1, suggesting that IGFBP-5 could directly activate tPA. Indeed, IGFBP-5 and the C-term E and F were all able to enhance the activity of tPA but not uPA. These data demonstrate that IGFBP-5 can enhance the activity of tPA and that this can result in cell death induced by cleavage of focal adhesions. Thus IGFBP-5 can induce cell death by both sequestering IGF-I and enhancing plasmin generation.
A.M. Sorrell, J.H. Shand, E. Tonner, M. Gamberoni, P. A. Accorsi, J. Beattie, et al. (2006). Insulin-like growth factor binding protein-5 activates plasminogen by interaction with tissue plasminogen activator, independently of its ability to bind to plasminogen activator inhibitor-1, insulin-like growth factor-I or heparin. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 281, 10883-10889 [10.1074/jbc.M508505200].
Insulin-like growth factor binding protein-5 activates plasminogen by interaction with tissue plasminogen activator, independently of its ability to bind to plasminogen activator inhibitor-1, insulin-like growth factor-I or heparin
GAMBERONI, MATTEO;ACCORSI, PIER ATTILIO;
2006
Abstract
Transgenic mice expressing IGFBP-5 in the mammary gland exhibit increased cell death and plasmin generation. Because IGFBP-5 has been reported to bind to plasminogen activator inhibitor- 1 (PAI-1), we determined the effects of this interaction in HC11 cells. PAI-1 prevented plasmin generation from plasminogen and inhibited cleavage of focal adhesions, expression of caspase 3, and cell death. IGFBP-5 could in turn prevent the effects of PAI-1. IGFBP-5 mutants with reduced affinity for IGF-I (N-term) or deficient in heparin binding (HEP and C-term E and F) were also effective. This was surprising because IGFBP-5 reportedly interacts with PAI-1 via its heparin-binding domain. Biosensor analysis confirmed that, although wild-type IGFBP-5 and N-term both bound to PAI-1, the C-term E had greatly decreased interaction with PAI-1. This suggests that IGFBP-5 does not antagonize the actions of PAI-1 by a direct molecular interaction. In a cell-free system, using tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) to activate plasminogen, PAI-1 inhibited plasmin generation induced by both activators, whereas IGFBP-5 prevented the effects of PAI-1 on tPA but not uPA. Furthermore, we noted that IGFBP-5 activated plasminogen to a greater extent than could be explained solely by inhibition of PAI-1, suggesting that IGFBP-5 could directly activate tPA. Indeed, IGFBP-5 and the C-term E and F were all able to enhance the activity of tPA but not uPA. These data demonstrate that IGFBP-5 can enhance the activity of tPA and that this can result in cell death induced by cleavage of focal adhesions. Thus IGFBP-5 can induce cell death by both sequestering IGF-I and enhancing plasmin generation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.