The genetic basis of resistance to soil-borne cereal mosaic virus (SBCMV) in the Triticum turgidum L. var. durum cv. Neodur was analyzed in this study, using a linkage mapping approach. We performed phenotypic and molecular analyses of 146 recombinant inbred lines derived from the cross Cirillo (highly susceptible)×Neodur (highly resistant). A major quantitative trait locus (QTL) that explained up to 87% of the observed variability for symptom severity was identified on the short arm of chromosome 2B, within the 40-cM interval between the markers Xwmc764 and Xgwm1128, with wPt-2106 as the peak marker. Three minor QTLs were found on chromosomes 3B and 7B. Two markers coding for resistance proteins co-segregate with the major QTL on chromosome 2B and the minor QTL on chromosome 3B, representing potential candidate genes for the two resistance loci. Microsatellite markers flanking the major QTL were evaluated on a set of 25 durum wheat genotypes that were previously characterized for SBCMV resistance. The allelic composition of the genotypes at these loci, together with pedigree data, suggests that the old Italian cultivar Cappelli provided the SBCMV-resistance determinants to durum cultivars that have been independently bred in different countries over the last century. © 2012 Copyright Taylor and Francis Group, LLC.
M.A. Russo, D. Ficco, D. Marone, P. De Vita, V. Vallega, C. Rubies-Autonell, et al. (2012). A major QTL for resistance to soil-borne cereal mosaic virus derived from an old Italian durum wheat cultivar. JOURNAL OF PLANT INTERACTIONS, 7(4), 290-300 [10.1080/17429145.2011.640437].
A major QTL for resistance to soil-borne cereal mosaic virus derived from an old Italian durum wheat cultivar
C. Rubies-Autonell;C. Ratti;
2012
Abstract
The genetic basis of resistance to soil-borne cereal mosaic virus (SBCMV) in the Triticum turgidum L. var. durum cv. Neodur was analyzed in this study, using a linkage mapping approach. We performed phenotypic and molecular analyses of 146 recombinant inbred lines derived from the cross Cirillo (highly susceptible)×Neodur (highly resistant). A major quantitative trait locus (QTL) that explained up to 87% of the observed variability for symptom severity was identified on the short arm of chromosome 2B, within the 40-cM interval between the markers Xwmc764 and Xgwm1128, with wPt-2106 as the peak marker. Three minor QTLs were found on chromosomes 3B and 7B. Two markers coding for resistance proteins co-segregate with the major QTL on chromosome 2B and the minor QTL on chromosome 3B, representing potential candidate genes for the two resistance loci. Microsatellite markers flanking the major QTL were evaluated on a set of 25 durum wheat genotypes that were previously characterized for SBCMV resistance. The allelic composition of the genotypes at these loci, together with pedigree data, suggests that the old Italian cultivar Cappelli provided the SBCMV-resistance determinants to durum cultivars that have been independently bred in different countries over the last century. © 2012 Copyright Taylor and Francis Group, LLC.File | Dimensione | Formato | |
---|---|---|---|
316321 A major QTL for resistance to soil borne cereal mosaic virus derived from an old Italian durum wheat cultivar.pdf
accesso riservato
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso riservato
Dimensione
397.27 kB
Formato
Adobe PDF
|
397.27 kB | Adobe PDF | Visualizza/Apri Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.