This paper proposes a simple procedure for obtaining monthly assessments of short-run perspectives for quarterly world GDP and trade. It combines high-frequency information from emerging and advanced countries so as to explain quarterly national accounts variables through bridge models. The union of all bridge equations leads to our world bridge model (WBM). The WBM approach of this paper is new for two reasons: its equations combine traditional short-run bridging with theoretical level-relationships, and it is the first time that forecasts of world GDP and trade have been computed for both advanced and emerging countries on the basis of a real-time database of approximately 7000 time series. Although the performances of the equations that are searched automatically should be taken as a lower bound, our results show that the forecasting ability of the WBM is superior to the benchmark. Finally, our results confirm that the use of revised data leads to models’ forecasting performances being overstated significantly.
Roberto Golinelli, Giuseppe Parigi (2014). Tracking world trade and GDP in real time. INTERNATIONAL JOURNAL OF FORECASTING, 30, 847-862 [10.1016/j.ijforecast.2014.01.008].
Tracking world trade and GDP in real time
GOLINELLI, ROBERTO;
2014
Abstract
This paper proposes a simple procedure for obtaining monthly assessments of short-run perspectives for quarterly world GDP and trade. It combines high-frequency information from emerging and advanced countries so as to explain quarterly national accounts variables through bridge models. The union of all bridge equations leads to our world bridge model (WBM). The WBM approach of this paper is new for two reasons: its equations combine traditional short-run bridging with theoretical level-relationships, and it is the first time that forecasts of world GDP and trade have been computed for both advanced and emerging countries on the basis of a real-time database of approximately 7000 time series. Although the performances of the equations that are searched automatically should be taken as a lower bound, our results show that the forecasting ability of the WBM is superior to the benchmark. Finally, our results confirm that the use of revised data leads to models’ forecasting performances being overstated significantly.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.