We establish a Harnack inequality for a class of quasi-linear PDE modeled on the p-Laplacian for Hormander vector fields. Our estimates are derived assuming that the control distance generated by the vector fields induces the topology on M, a doubling condition for the measure of metric balls; and the validity of a Poincaré inequality

Benny Avelin, Luca Capogna, Giovanna Citti, Kaj Nyström (2014). Harnack estimates for degenerate parabolic equations modeled on the subelliptic p-Laplacian. ADVANCES IN MATHEMATICS, 257, 25-65 [10.1016/j.aim.2014.02.018].

Harnack estimates for degenerate parabolic equations modeled on the subelliptic p-Laplacian

CITTI, GIOVANNA;
2014

Abstract

We establish a Harnack inequality for a class of quasi-linear PDE modeled on the p-Laplacian for Hormander vector fields. Our estimates are derived assuming that the control distance generated by the vector fields induces the topology on M, a doubling condition for the measure of metric balls; and the validity of a Poincaré inequality
2014
Benny Avelin, Luca Capogna, Giovanna Citti, Kaj Nyström (2014). Harnack estimates for degenerate parabolic equations modeled on the subelliptic p-Laplacian. ADVANCES IN MATHEMATICS, 257, 25-65 [10.1016/j.aim.2014.02.018].
Benny Avelin;Luca Capogna;Giovanna Citti;Kaj Nyström
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/312915
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact