We establish a Harnack inequality for a class of quasi-linear PDE modeled on the p-Laplacian for Hormander vector fields. Our estimates are derived assuming that the control distance generated by the vector fields induces the topology on M, a doubling condition for the measure of metric balls; and the validity of a Poincaré inequality
Titolo: | Harnack estimates for degenerate parabolic equations modeled on the subelliptic p-Laplacian | |
Autore/i: | Benny Avelin; Luca Capogna; CITTI, GIOVANNA; Kaj Nyström | |
Autore/i Unibo: | ||
Anno: | 2014 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.aim.2014.02.018 | |
Abstract: | We establish a Harnack inequality for a class of quasi-linear PDE modeled on the p-Laplacian for Hormander vector fields. Our estimates are derived assuming that the control distance generated by the vector fields induces the topology on M, a doubling condition for the measure of metric balls; and the validity of a Poincaré inequality | |
Data prodotto definitivo in UGOV: | 2014-07-12 12:48:58 | |
Data stato definitivo: | 2016-07-18T01:16:23Z | |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.