Protein glutathionylation is a redox post-translational modification occurring under oxidative stress conditions and playing a major role in cell regulation and signaling. This modification has been mainly studied in nonphotosynthetic organisms, whereas much less is known in photosynthetic organisms despite their important exposure to oxidative stress caused by changes in environmental conditions. We report a large scale proteomic analysis using biotinylated glutathione and streptavidin affinity chromatography that allowed identification of 225 glutathionylated proteins in the eukaryotic unicellular green alga Chlamydomonas reinhardtii. Moreover, 56 sites of glutathionylation were also identified after peptide affinity purification and tandem mass spectrometry. The targets identified belong to a wide range of biological processes and pathways, among which the Calvin-Benson cycle appears to be a major target. The glutathionylation of four enzymes of this cycle, phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, ribose-5-phosphate isomerase, and phosphoglycerate kinase was confirmed by Western blot and activity measurements. The results suggest that glutathionylation could constitute a major mechanism of regulation of the Calvin-Benson cycle under oxidative stress conditions.

Zaffagnini M, Bedhomme M, Groni H, Marchand CH, Puppo C, Gontero B, et al. (2012). Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey. MOLECULAR & CELLULAR PROTEOMICS, 11(2), 1-15 [10.1074/mcp.M111.014142].

Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey

ZAFFAGNINI, MIRKO;
2012

Abstract

Protein glutathionylation is a redox post-translational modification occurring under oxidative stress conditions and playing a major role in cell regulation and signaling. This modification has been mainly studied in nonphotosynthetic organisms, whereas much less is known in photosynthetic organisms despite their important exposure to oxidative stress caused by changes in environmental conditions. We report a large scale proteomic analysis using biotinylated glutathione and streptavidin affinity chromatography that allowed identification of 225 glutathionylated proteins in the eukaryotic unicellular green alga Chlamydomonas reinhardtii. Moreover, 56 sites of glutathionylation were also identified after peptide affinity purification and tandem mass spectrometry. The targets identified belong to a wide range of biological processes and pathways, among which the Calvin-Benson cycle appears to be a major target. The glutathionylation of four enzymes of this cycle, phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, ribose-5-phosphate isomerase, and phosphoglycerate kinase was confirmed by Western blot and activity measurements. The results suggest that glutathionylation could constitute a major mechanism of regulation of the Calvin-Benson cycle under oxidative stress conditions.
2012
Zaffagnini M, Bedhomme M, Groni H, Marchand CH, Puppo C, Gontero B, et al. (2012). Glutathionylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey. MOLECULAR & CELLULAR PROTEOMICS, 11(2), 1-15 [10.1074/mcp.M111.014142].
Zaffagnini M; Bedhomme M; Groni H; Marchand CH; Puppo C; Gontero B; Cassier-Chauvat C; Decottignies P; Lemaire SD.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/309340
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 125
  • ???jsp.display-item.citation.isi??? 121
social impact