The 2009 L'Aquila, Italy earthquake shook a high density area causing a wide spectrum of damage to reinforced concrete with infill buildings, one of the most common building types used in Italy. The earthquake has proven to be a "full-scale" laboratory to further understand building performance. This paper presents the first results of a joint research effort between the University of Bologna and Degenkolb Engineers, aimed at investigating the seismic behavior of an infilled frame building that collapsed during the earthquake. State-of-the-practice techniques were implemented as a way to determine the reliability of these modeling techniques in anticipating the observed building performance. The main results indicate that: (i) the state-of-the-practice techniques are able to predict the observed behavior of the buildings; (ii) the masonry infills have a great influence on the behavior of the building in terms of stiffness, strength and global ductility.

On the seismic behavior of a reinforced concrete building with masonry infills collapsed during the 2009 L'Aquila earthquake

PALERMO, MICHELE;TROMBETTI, TOMASO
2014

Abstract

The 2009 L'Aquila, Italy earthquake shook a high density area causing a wide spectrum of damage to reinforced concrete with infill buildings, one of the most common building types used in Italy. The earthquake has proven to be a "full-scale" laboratory to further understand building performance. This paper presents the first results of a joint research effort between the University of Bologna and Degenkolb Engineers, aimed at investigating the seismic behavior of an infilled frame building that collapsed during the earthquake. State-of-the-practice techniques were implemented as a way to determine the reliability of these modeling techniques in anticipating the observed building performance. The main results indicate that: (i) the state-of-the-practice techniques are able to predict the observed behavior of the buildings; (ii) the masonry infills have a great influence on the behavior of the building in terms of stiffness, strength and global ductility.
2014
Michele Palermo;Ricardo Rafael Hernandez;Silvia Mazzoni;Tomaso Trombetti
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/306122
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact