In this paper we study subdivision schemes that both interpolate and preserve the monotonicity of the input data, and we derive a simple ratio condition that guarantees the continuous differentiability of the limit function. We then show that the condition holds for both a scheme of Kuijt and van Damme, based on rational functions, and a scheme of Sabin and Dodgson, based on square roots.

M. Floater, C. Beccari, T. Cashman, L. Romani (2013). A smoothness criterion for monotonicity-preserving subdivision. ADVANCES IN COMPUTATIONAL MATHEMATICS, 39, 193-204 [10.1007/s10444-012-9275-y].

A smoothness criterion for monotonicity-preserving subdivision

BECCARI, CAROLINA VITTORIA;L. Romani
2013

Abstract

In this paper we study subdivision schemes that both interpolate and preserve the monotonicity of the input data, and we derive a simple ratio condition that guarantees the continuous differentiability of the limit function. We then show that the condition holds for both a scheme of Kuijt and van Damme, based on rational functions, and a scheme of Sabin and Dodgson, based on square roots.
2013
M. Floater, C. Beccari, T. Cashman, L. Romani (2013). A smoothness criterion for monotonicity-preserving subdivision. ADVANCES IN COMPUTATIONAL MATHEMATICS, 39, 193-204 [10.1007/s10444-012-9275-y].
M. Floater; C. Beccari; T. Cashman; L. Romani
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/304961
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact