We show the following symmetry property of a bounded Reinhardt domain Ω in Cn+1: let M=∂Ω be the smooth boundary of Ω and let h be the Second Fundamental Form of M; if the coefficient h(T,T) related to the characteristic direction T is constant then M is a sphere. In the Appendix we state the result from a hamiltonian point of view.

Vittorio Martino (2011). A symmetry result on Reinhardt domains. DIFFERENTIAL AND INTEGRAL EQUATIONS, 24, 495-504.

A symmetry result on Reinhardt domains

MARTINO, VITTORIO
2011

Abstract

We show the following symmetry property of a bounded Reinhardt domain Ω in Cn+1: let M=∂Ω be the smooth boundary of Ω and let h be the Second Fundamental Form of M; if the coefficient h(T,T) related to the characteristic direction T is constant then M is a sphere. In the Appendix we state the result from a hamiltonian point of view.
2011
Vittorio Martino (2011). A symmetry result on Reinhardt domains. DIFFERENTIAL AND INTEGRAL EQUATIONS, 24, 495-504.
Vittorio Martino
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/301541
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact