We consider a family of tight contact forms on the three-dimensional torus and we compute the relative Contact Homology by using the variational theory of critical points at infinity. We will also show local stability.

Ali Maalaoui, Vittorio Martino (2014). Homology computation for a class of contact structures on T^3. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 50, 599-614 [10.1007/s00526-013-0648-y].

Homology computation for a class of contact structures on T^3

MARTINO, VITTORIO
2014

Abstract

We consider a family of tight contact forms on the three-dimensional torus and we compute the relative Contact Homology by using the variational theory of critical points at infinity. We will also show local stability.
2014
Ali Maalaoui, Vittorio Martino (2014). Homology computation for a class of contact structures on T^3. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 50, 599-614 [10.1007/s00526-013-0648-y].
Ali Maalaoui;Vittorio Martino
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/301524
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact