Image-based approaches based on one-class classifiers are presented. The information is extracted with a feature-based representation and recognized by using an ensemble of one-class classifiers. The features extracted by “FingerCode” are used to capture the ridge strength. The experiments show that our system outperforms the standard “FingerCode” recognition method.

Nanni, L., Lumini, A. (2006). Random Bands: A novel ensemble for fingerprint matching. NEUROCOMPUTING, 69, 1702-1705 [10.1016/j.neucom.2006.01.011].

Random Bands: A novel ensemble for fingerprint matching

NANNI, LORIS;LUMINI, ALESSANDRA
2006

Abstract

Image-based approaches based on one-class classifiers are presented. The information is extracted with a feature-based representation and recognized by using an ensemble of one-class classifiers. The features extracted by “FingerCode” are used to capture the ridge strength. The experiments show that our system outperforms the standard “FingerCode” recognition method.
2006
Nanni, L., Lumini, A. (2006). Random Bands: A novel ensemble for fingerprint matching. NEUROCOMPUTING, 69, 1702-1705 [10.1016/j.neucom.2006.01.011].
Nanni, Loris; Lumini, Alessandra
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/30128
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact