Recently, several works have approached the HIV-1 protease specificity problem by applying techniques from machine learning. In this work, an encoding scheme based on the BLOSUM50 matrix is investigated. We show that combining a linear discriminant classifier and radial basis function Support Vector Machine we obtain performance higher than previously published in the literature.

Nanni, L., Lumini, A. (2006). A reliable method for HIV-1 Protease Cleavage Site Prediction. NEUROCOMPUTING, 69, 838-841 [10.1016/j.neucom.2005.09.004].

A reliable method for HIV-1 Protease Cleavage Site Prediction

NANNI, LORIS;LUMINI, ALESSANDRA
2006

Abstract

Recently, several works have approached the HIV-1 protease specificity problem by applying techniques from machine learning. In this work, an encoding scheme based on the BLOSUM50 matrix is investigated. We show that combining a linear discriminant classifier and radial basis function Support Vector Machine we obtain performance higher than previously published in the literature.
2006
Nanni, L., Lumini, A. (2006). A reliable method for HIV-1 Protease Cleavage Site Prediction. NEUROCOMPUTING, 69, 838-841 [10.1016/j.neucom.2005.09.004].
Nanni, Loris; Lumini, Alessandra
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/30120
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact