Aims: We investigate the morphological properties of 494 galaxies selected from the Galaxy Mass Assembly ultra-deep Spectroscopic Survey (GMASS) at z > 1, primarily in their optical rest frame, using Hubble Space Telescope (HST) infrared images, from the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). Methods: The morphological analysis of Wield Field Camera (WFC3) H160 band images was performed using two different methods: a visual classification identifying traditional Hubble types, and a quantitative analysis using parameters that describe structural properties, such as the concentration of light and the rotational asymmetry. The two classifications are compared. We then analysed how apparent morphologies correlate with the physical properties of galaxies. Results: The fractions of both elliptical and disk galaxies decrease between redshifts z ~ 1 to z ~ 3, while at z > 3 the galaxy population is dominated by irregular galaxies. The quantitative morphological analysis shows that, at 1 < z < 3, morphological parameters are not as effective in distinguishing the different morphological Hubble types as they are at low redshift. No significant morphological k-correction was found to be required for the Hubble type classification, with some exceptions. In general, different morphological types occupy the two peaks of the (U - B)rest colour bimodality of galaxies: most irregulars occupy the blue peak, while ellipticals are mainly found in the red peak, though with some level of contamination. Disks are more evenly distributed than either irregulars and ellipticals. We find that the position of a galaxy in a UVJ diagram is related to its morphological type: the "quiescent" region of the plot is mainly occupied by ellipticals and, to a lesser extent, by disks. We find that only ~33% of all morphological ellipticals in our sample are red and passively evolving galaxies, a percentage that is consistent with previous results obtained at z < 1. Blue galaxies morphologically classified as ellipticals show a remarkable structural similarity to red ones. We search for correlations between our morphological and spectroscopic galaxy classifications. Almost all irregulars have a star-forming galaxy spectrum. In addition, the majority of disks show some sign of star-formation activity in their spectra, though in some cases their red continuum is indicative of old stellar populations. Finally, an elliptical morphology may be associated with either passively evolving or strongly star-forming galaxies. Conclusions: We propose that the Hubble sequence of galaxy morphologies takes shape at redshift 2.5 < z < 3. The fractions of both ellipticals and disks decrease with increasing lookback time at z > 1, such that at redshifts z = 2.5-2.7 and above, the Hubble types cannot be identified, and most galaxies are classified as irregular.

M. Talia, A. Cimatti, M. Mignoli, L. Pozzetti, A. Renzini, J. Kurk, et al. (2014). Listening to galaxies tuning atz~ 2.5–3.0: The first strikes of the Hubble fork. ASTRONOMY & ASTROPHYSICS, 562, 113-140 [10.1051/0004-6361/201322193].

Listening to galaxies tuning atz~ 2.5–3.0: The first strikes of the Hubble fork

TALIA, MARGHERITA;CIMATTI, ANDREA;
2014

Abstract

Aims: We investigate the morphological properties of 494 galaxies selected from the Galaxy Mass Assembly ultra-deep Spectroscopic Survey (GMASS) at z > 1, primarily in their optical rest frame, using Hubble Space Telescope (HST) infrared images, from the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). Methods: The morphological analysis of Wield Field Camera (WFC3) H160 band images was performed using two different methods: a visual classification identifying traditional Hubble types, and a quantitative analysis using parameters that describe structural properties, such as the concentration of light and the rotational asymmetry. The two classifications are compared. We then analysed how apparent morphologies correlate with the physical properties of galaxies. Results: The fractions of both elliptical and disk galaxies decrease between redshifts z ~ 1 to z ~ 3, while at z > 3 the galaxy population is dominated by irregular galaxies. The quantitative morphological analysis shows that, at 1 < z < 3, morphological parameters are not as effective in distinguishing the different morphological Hubble types as they are at low redshift. No significant morphological k-correction was found to be required for the Hubble type classification, with some exceptions. In general, different morphological types occupy the two peaks of the (U - B)rest colour bimodality of galaxies: most irregulars occupy the blue peak, while ellipticals are mainly found in the red peak, though with some level of contamination. Disks are more evenly distributed than either irregulars and ellipticals. We find that the position of a galaxy in a UVJ diagram is related to its morphological type: the "quiescent" region of the plot is mainly occupied by ellipticals and, to a lesser extent, by disks. We find that only ~33% of all morphological ellipticals in our sample are red and passively evolving galaxies, a percentage that is consistent with previous results obtained at z < 1. Blue galaxies morphologically classified as ellipticals show a remarkable structural similarity to red ones. We search for correlations between our morphological and spectroscopic galaxy classifications. Almost all irregulars have a star-forming galaxy spectrum. In addition, the majority of disks show some sign of star-formation activity in their spectra, though in some cases their red continuum is indicative of old stellar populations. Finally, an elliptical morphology may be associated with either passively evolving or strongly star-forming galaxies. Conclusions: We propose that the Hubble sequence of galaxy morphologies takes shape at redshift 2.5 < z < 3. The fractions of both ellipticals and disks decrease with increasing lookback time at z > 1, such that at redshifts z = 2.5-2.7 and above, the Hubble types cannot be identified, and most galaxies are classified as irregular.
2014
M. Talia, A. Cimatti, M. Mignoli, L. Pozzetti, A. Renzini, J. Kurk, et al. (2014). Listening to galaxies tuning atz~ 2.5–3.0: The first strikes of the Hubble fork. ASTRONOMY & ASTROPHYSICS, 562, 113-140 [10.1051/0004-6361/201322193].
M. Talia;A. Cimatti;M. Mignoli;L. Pozzetti;A. Renzini;J. Kurk;C. Halliday
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/300323
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact