Entry of herpes simplex virus into cells occurs by fusion and requires four glycoproteins. gD serves as the receptor binding glycoprotein. Of the remaining glycoproteins, gH carries structural and functional elements typical of class 1 fusion glycoproteins, in particular alpha-helix 1 (alpha-H1), with properties of a candidate fusion peptide, and two heptad repeats. Here, we characterized alpha-H2 and compared it to alpha-H1. alpha-H2 (amino acids 513 to 531) is of lower hydrophobicity than alpha-H1. Its deletion or mutation decreased virus infection and cell fusion. Its replacement with heterologous fusion peptides did not rescue infection and cell fusion beyond the levels exhibited by the alpha-H2-deleted gH. This contrasts with alpha-H1, which cannot be deleted and can be functionally replaced with heterologous fusion peptides (T. Gianni et al., J. Virol. 79:2931-2940, 2005). Synthetic peptides mimicking alpha-H1 and alpha-H2 induced fusion of nude lipid vesicles. Importantly, they increased infection of herpes simplex virus, pseudorabies virus, bovine herpesvirus 1, and vesicular stomatitis virus. The alpha-H1 mimetic peptide was more effective than the alpha-H2 peptide. Consistent with the findings that gH carries membrane-interacting segments, a soluble form of gH, but not of gD or gB, partitioned with lipid vesicles. Current findings highlight that alpha-H2 is an important albeit nonessential region for virus entry and fusion. alpha-H1 and alpha-H2 share the ability to target the membrane lipids; they contribute to virus entry and fusion, possibly by destabilizing the membranes. However, alpha-H2 differs from alpha-H1 in that it is of lower hydrophobicity and cannot be replaced with heterologous fusion peptides.

Gianni T., Fato R., Bergamini C., Lenaz G., Campadelli-Fiume G. (2006). Hydrophobic alpha-helices 1 and 2 of herpes simplex virus gH interact with lipids, and their mimetic peptides enhance virus infection and fusion. JOURNAL OF VIROLOGY, 80, 8190-8198.

Hydrophobic alpha-helices 1 and 2 of herpes simplex virus gH interact with lipids, and their mimetic peptides enhance virus infection and fusion.

GIANNI, TATIANA;FATO, ROMANA;BERGAMINI, CHRISTIAN;LENAZ, GIORGIO;CAMPADELLI, MARIA GABRIELLA
2006

Abstract

Entry of herpes simplex virus into cells occurs by fusion and requires four glycoproteins. gD serves as the receptor binding glycoprotein. Of the remaining glycoproteins, gH carries structural and functional elements typical of class 1 fusion glycoproteins, in particular alpha-helix 1 (alpha-H1), with properties of a candidate fusion peptide, and two heptad repeats. Here, we characterized alpha-H2 and compared it to alpha-H1. alpha-H2 (amino acids 513 to 531) is of lower hydrophobicity than alpha-H1. Its deletion or mutation decreased virus infection and cell fusion. Its replacement with heterologous fusion peptides did not rescue infection and cell fusion beyond the levels exhibited by the alpha-H2-deleted gH. This contrasts with alpha-H1, which cannot be deleted and can be functionally replaced with heterologous fusion peptides (T. Gianni et al., J. Virol. 79:2931-2940, 2005). Synthetic peptides mimicking alpha-H1 and alpha-H2 induced fusion of nude lipid vesicles. Importantly, they increased infection of herpes simplex virus, pseudorabies virus, bovine herpesvirus 1, and vesicular stomatitis virus. The alpha-H1 mimetic peptide was more effective than the alpha-H2 peptide. Consistent with the findings that gH carries membrane-interacting segments, a soluble form of gH, but not of gD or gB, partitioned with lipid vesicles. Current findings highlight that alpha-H2 is an important albeit nonessential region for virus entry and fusion. alpha-H1 and alpha-H2 share the ability to target the membrane lipids; they contribute to virus entry and fusion, possibly by destabilizing the membranes. However, alpha-H2 differs from alpha-H1 in that it is of lower hydrophobicity and cannot be replaced with heterologous fusion peptides.
2006
Gianni T., Fato R., Bergamini C., Lenaz G., Campadelli-Fiume G. (2006). Hydrophobic alpha-helices 1 and 2 of herpes simplex virus gH interact with lipids, and their mimetic peptides enhance virus infection and fusion. JOURNAL OF VIROLOGY, 80, 8190-8198.
Gianni T.; Fato R.; Bergamini C.; Lenaz G.; Campadelli-Fiume G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/29870
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 37
social impact