We prove C^{1,gamma} regularity of Lipschitz free boundaries of two-phase problems for a class of homogeneous fully nonlinear elliptic operators F(D^2u(x),x), with Hoelder dependence on x, containing convex (concave) operators.

F. Ferrari (2006). Two-phase problems for a class of fully nonlinear elliptic operators. Lipschitz free boundaries are $C^{1,gamma}$. AMERICAN JOURNAL OF MATHEMATICS, 128, 3, 541-571 [10.1353/ajm.2006.0023].

Two-phase problems for a class of fully nonlinear elliptic operators. Lipschitz free boundaries are $C^{1,gamma}$

FERRARI, FAUSTO
2006

Abstract

We prove C^{1,gamma} regularity of Lipschitz free boundaries of two-phase problems for a class of homogeneous fully nonlinear elliptic operators F(D^2u(x),x), with Hoelder dependence on x, containing convex (concave) operators.
2006
F. Ferrari (2006). Two-phase problems for a class of fully nonlinear elliptic operators. Lipschitz free boundaries are $C^{1,gamma}$. AMERICAN JOURNAL OF MATHEMATICS, 128, 3, 541-571 [10.1353/ajm.2006.0023].
F. Ferrari
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/29545
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact