Objectives. Dentin adhesives have been proposed as desensitizing agents to seat exposed root dentin surfaces. Simplified 'one-step' dentin adhesives are highly permeable to water. The authors hypothesized that a tactic acid challenge may increase permeability of simplified adhesives and may induce fast degradation of bonding. This phenomenon adversely affects their durability as tong term desensitizing agents. The aim of this in vitro study was to evaluate the ability of four dentin adhesives to seat root dentin surfaces that were exposed to water and tactic acid challenges. Methods. Four commercially-available dentin adhesives were applied with a small sponge to the root dentin of extracted human molars as de-sensitizing agents. Impression replicas of the adhesive-covered root dentin were fabricated after water immersion, as a control, and after tactic acid challenge. The replicas were examined with SEM for quantitative comparison of fluid droplet formation on the surfaces. The bonded specimens were also examined using reflected tight confocal microscopy. Results. Replicas of water droplets were observed on the adhesive surfaces, by SEM which corresponded with direct confocal. observation of blisters and voids from the surface of the bonded specimens. There were significantly more water droplets from samples that were subjected to tactic acid challenge than water only immersion. Significance. Although the dentin adhesives examined were able to cover exposed root dentin, they all exhibited fluid transudation through the polymerized adhesives. Dentin adhesives were also susceptible to surface degradation after tactic acid challenge. As simplified self-etch adhesives were highly water permeable and exhibited the most extensive surface damage, they may not be the best adhesives to be used for tong-term dentin desensitization. These preliminary in vitro findings warrant validation in vivo. (c) 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Water uptake of bonding systems applied on root dentin surfaces: a SEM and confocal microscopic study

SAURO, SALVATORE;CHERSONI, STEFANO;BRESCHI, LORENZO;BERNARDI, FEDERICO;PRATI, CARLO
2006

Abstract

Objectives. Dentin adhesives have been proposed as desensitizing agents to seat exposed root dentin surfaces. Simplified 'one-step' dentin adhesives are highly permeable to water. The authors hypothesized that a tactic acid challenge may increase permeability of simplified adhesives and may induce fast degradation of bonding. This phenomenon adversely affects their durability as tong term desensitizing agents. The aim of this in vitro study was to evaluate the ability of four dentin adhesives to seat root dentin surfaces that were exposed to water and tactic acid challenges. Methods. Four commercially-available dentin adhesives were applied with a small sponge to the root dentin of extracted human molars as de-sensitizing agents. Impression replicas of the adhesive-covered root dentin were fabricated after water immersion, as a control, and after tactic acid challenge. The replicas were examined with SEM for quantitative comparison of fluid droplet formation on the surfaces. The bonded specimens were also examined using reflected tight confocal microscopy. Results. Replicas of water droplets were observed on the adhesive surfaces, by SEM which corresponded with direct confocal. observation of blisters and voids from the surface of the bonded specimens. There were significantly more water droplets from samples that were subjected to tactic acid challenge than water only immersion. Significance. Although the dentin adhesives examined were able to cover exposed root dentin, they all exhibited fluid transudation through the polymerized adhesives. Dentin adhesives were also susceptible to surface degradation after tactic acid challenge. As simplified self-etch adhesives were highly water permeable and exhibited the most extensive surface damage, they may not be the best adhesives to be used for tong-term dentin desensitization. These preliminary in vitro findings warrant validation in vivo. (c) 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
2006
Sauro S.; Watson T. F.; Tay F. R.; Chersoni S.; Breschi L.; Bernardi F.; Prati.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/29256
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact