In this paper we will give a sufficient condition on real strictly Levi-convex hypersurfaces $M$, embedded in four-dimensional K\"{a}hler manifolds $V$, such that Legendre duality can be performed. We consider the contact form $\theta$ on $M$ whose kernel is the restriction of the holomorphic tangent space of $V$: we will show that if there exists a Legendrian Killing vector field $v$, then the dual form $\beta(\cdot):=d\theta(v,\cdot)$ is a contact form on $M$ with the same orientation than $\theta$.
Titolo: | Legendre duality on hypersurfaces in Kähler manifolds |
Autore/i: | MARTINO, VITTORIO |
Autore/i Unibo: | |
Anno: | 2014 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1515/advgeom-2014-0016 |
Abstract: | In this paper we will give a sufficient condition on real strictly Levi-convex hypersurfaces $M$, embedded in four-dimensional K\"{a}hler manifolds $V$, such that Legendre duality can be performed. We consider the contact form $\theta$ on $M$ whose kernel is the restriction of the holomorphic tangent space of $V$: we will show that if there exists a Legendrian Killing vector field $v$, then the dual form $\beta(\cdot):=d\theta(v,\cdot)$ is a contact form on $M$ with the same orientation than $\theta$. |
Data prodotto definitivo in UGOV: | 2014-06-24 14:46:19 |
Data stato definitivo: | 2016-10-20T18:32:15Z |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.