he representation of liquid–liquid equilibria (LLE) in ternary systems composed by water, 1,4-dioxane and different grades of poly(lactic acid) (PDLLA and PLLA), has been addressed through the PC-SAFT equation of state (EoS), in which the scheme of induced association is used to represent the interaction between solvent (dioxane) and non-solvent (water). The model parameters devoted to the description of pure component properties, as well as those pertinent to the representation of thermodynamic behaviour of solvent/non-solvent mixtures, were tuned on the basis of specific pressure–volume–temperature (PVT) data for the corresponding systems. Only the binary parameters for polymer–solvent and polymer/non-solvent pairs were adjusted to obtain a useful representation of experimental LLE data for the ternary systems. A suitable description of the thermodynamic properties of ternary mixtures was obtained using temperature-independent binary interaction parameters in the range 25–80 °C, and the consistency of the approach in the entire composition range was verified against experimental solubility data specifically measured for the polymer/non-solvent pair. The model shows good ability in the description of the thermodynamic properties of the system and it represents a reliable tool for the prediction of LLE also at conditions different from those considered for its set-up. This approach thus represents a useful designing tool for processes, such as thermally induced phase separation (TIPS), used in the preparation of microporous polymeric scaffolds.

G. Cocchi, M.G. De Angelis, G. Sadowski, F. Doghieri (2014). Modelling polylactide/water/dioxane systems for TIPS scaffold fabrication. FLUID PHASE EQUILIBRIA, 374, 1-8 [10.1016/j.fluid.2014.04.007].

Modelling polylactide/water/dioxane systems for TIPS scaffold fabrication

DE ANGELIS, MARIA GRAZIA;DOGHIERI, FERRUCCIO
2014

Abstract

he representation of liquid–liquid equilibria (LLE) in ternary systems composed by water, 1,4-dioxane and different grades of poly(lactic acid) (PDLLA and PLLA), has been addressed through the PC-SAFT equation of state (EoS), in which the scheme of induced association is used to represent the interaction between solvent (dioxane) and non-solvent (water). The model parameters devoted to the description of pure component properties, as well as those pertinent to the representation of thermodynamic behaviour of solvent/non-solvent mixtures, were tuned on the basis of specific pressure–volume–temperature (PVT) data for the corresponding systems. Only the binary parameters for polymer–solvent and polymer/non-solvent pairs were adjusted to obtain a useful representation of experimental LLE data for the ternary systems. A suitable description of the thermodynamic properties of ternary mixtures was obtained using temperature-independent binary interaction parameters in the range 25–80 °C, and the consistency of the approach in the entire composition range was verified against experimental solubility data specifically measured for the polymer/non-solvent pair. The model shows good ability in the description of the thermodynamic properties of the system and it represents a reliable tool for the prediction of LLE also at conditions different from those considered for its set-up. This approach thus represents a useful designing tool for processes, such as thermally induced phase separation (TIPS), used in the preparation of microporous polymeric scaffolds.
2014
G. Cocchi, M.G. De Angelis, G. Sadowski, F. Doghieri (2014). Modelling polylactide/water/dioxane systems for TIPS scaffold fabrication. FLUID PHASE EQUILIBRIA, 374, 1-8 [10.1016/j.fluid.2014.04.007].
G. Cocchi; M.G. De Angelis; G. Sadowski; F. Doghieri
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/285516
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact