We present a new piecewise linear approximation of non-linear optimization problems. It can be seen as a variant of classical triangulations that leaves more degrees of freedom to define any point as a convex combination of the samples. We show theoretical properties of the approximating functions, and provide computational evidence of the impact of their use within MILP models approximating non-linear problems.

Riccardo Rovatti, Claudia D’Ambrosio, Andrea Lodi, Silvano Martello (2014). Optimistic MILP modeling of non-linear optimization problems. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 239, 32-45 [10.1016/j.ejor.2014.03.020].

Optimistic MILP modeling of non-linear optimization problems

ROVATTI, RICCARDO;LODI, ANDREA;MARTELLO, SILVANO
2014

Abstract

We present a new piecewise linear approximation of non-linear optimization problems. It can be seen as a variant of classical triangulations that leaves more degrees of freedom to define any point as a convex combination of the samples. We show theoretical properties of the approximating functions, and provide computational evidence of the impact of their use within MILP models approximating non-linear problems.
2014
Riccardo Rovatti, Claudia D’Ambrosio, Andrea Lodi, Silvano Martello (2014). Optimistic MILP modeling of non-linear optimization problems. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 239, 32-45 [10.1016/j.ejor.2014.03.020].
Riccardo Rovatti; Claudia D’Ambrosio; Andrea Lodi; Silvano Martello
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/281317
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact