Some important properties of photonic wire Bragg grating structures have been investigated. The design, obtained as a generalisation of the full-width gap grating, has been modelled using 3D finite-difference time-domain simulations. Different types of stop-band have been observed. The impact of the grating geometry on the lowest order (longest wavelength) stop-band has been investigated – and has identified deeply indented configurations where reduction of the stop-bandwidth and of the reflectivity occurred. Our computational results have been substantially validated by an experimental demonstration of the fundamental stop-band of photonic wire Bragg gratings fabricated on silicon-on-insulator material. The accuracy of two distinct 2D computational models based on the effective index method has also been studied – because of their inherently much greater rapidity and consequent utility for approximate initial designs. A 2D plan-view model has been found to reproduce a large part of the essential features of the spectral response of full 3D models.

Gnan, M., Bellanca, G., Chong, H.M.H., Bassi, P., De La Rue, R.M. (2006). Modelling of photonic wire Bragg gratings. OPTICAL AND QUANTUM ELECTRONICS, 38, 133-148 [10.1007/s11082-006-0010-0].

Modelling of photonic wire Bragg gratings

BASSI, PAOLO;
2006

Abstract

Some important properties of photonic wire Bragg grating structures have been investigated. The design, obtained as a generalisation of the full-width gap grating, has been modelled using 3D finite-difference time-domain simulations. Different types of stop-band have been observed. The impact of the grating geometry on the lowest order (longest wavelength) stop-band has been investigated – and has identified deeply indented configurations where reduction of the stop-bandwidth and of the reflectivity occurred. Our computational results have been substantially validated by an experimental demonstration of the fundamental stop-band of photonic wire Bragg gratings fabricated on silicon-on-insulator material. The accuracy of two distinct 2D computational models based on the effective index method has also been studied – because of their inherently much greater rapidity and consequent utility for approximate initial designs. A 2D plan-view model has been found to reproduce a large part of the essential features of the spectral response of full 3D models.
2006
Gnan, M., Bellanca, G., Chong, H.M.H., Bassi, P., De La Rue, R.M. (2006). Modelling of photonic wire Bragg gratings. OPTICAL AND QUANTUM ELECTRONICS, 38, 133-148 [10.1007/s11082-006-0010-0].
Gnan, M.; Bellanca, G.; Chong, H. M. H.; Bassi, Paolo; De La Rue, R. M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/27876
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 54
social impact