Human IL-1 family proteins are key mediators of the host response to infections, injury, and immunologic challenges. The mechanism by which IL-1 activates proinflammatory responses in target cells, and the plasma membrane receptors involved, is fairly well known. This has led to the development of innovative drugs that block IL-1 downstream to its synthesis and secretion. On the contrary, the mechanism of IL-1 and other IL-1 family members (e.g., IL-18) maturation and release is incompletely understood. Accruing evidence points to a plasma membrane receptor for extracellular ATP, the P2X7 receptor, as a key player in both processes. A deeper understanding of the mechanism by which the P2X7 receptor triggers IL-1 maturation and exteriorization may suggest novel avenues for the treatment of inflammatory diseases and provide a deeper insight in the fundamental mechanism of protease activation and cellular export of proteins lacking a leader sequence
Davide Ferrari, Cinzia Pizzirani, Elena Adinolfi, Roberto M. Lemoli, Antonio Curti, Marco Idzko, et al. (2006). The P2X7 receptor: a new player in IL-1 processing and release. JOURNAL OF IMMUNOLOGY, 176(7), 3877-3883 [10.4049/jimmunol.176.7.3877].
The P2X7 receptor: a new player in IL-1 processing and release
LEMOLI, ROBERTO MASSIMO;CURTI, ANTONIO;
2006
Abstract
Human IL-1 family proteins are key mediators of the host response to infections, injury, and immunologic challenges. The mechanism by which IL-1 activates proinflammatory responses in target cells, and the plasma membrane receptors involved, is fairly well known. This has led to the development of innovative drugs that block IL-1 downstream to its synthesis and secretion. On the contrary, the mechanism of IL-1 and other IL-1 family members (e.g., IL-18) maturation and release is incompletely understood. Accruing evidence points to a plasma membrane receptor for extracellular ATP, the P2X7 receptor, as a key player in both processes. A deeper understanding of the mechanism by which the P2X7 receptor triggers IL-1 maturation and exteriorization may suggest novel avenues for the treatment of inflammatory diseases and provide a deeper insight in the fundamental mechanism of protease activation and cellular export of proteins lacking a leader sequenceI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.