The limited durability of resin-dentin bonds severely compromises the lifetime of tooth-colored restorations. Bond degradation occurs via hydrolysis of suboptimally polymerized hydrophilic resin components and degradation of water-rich, resin-sparse collagen matrices by matrix metalloproteinases (MMPs) and cysteine cathepsins. This review examined data generated over the past three years on five experimental strategies developed by different research groups for extending the longevity of resin-dentin bonds. They include: (1) increasing the degree of conversion and esterase resistance of hydrophilic adhesives; (2) the use of broad-spectrum inhibitors of collagenolytic enzymes, including novel inhibitor functional groups grafted to methacrylate resins monomers to produce anti-MMP adhesives; (3) the use of cross-linking agents for silencing the activities of MMP and cathepsins that irreversibly alter the 3-D structures of their catalytic/allosteric domains; (4) ethanol wet-bonding with hydrophobic resins to completely replace water from the extrafibrillar and intrafibrillar collagen compartments and immobilize the collagenolytic enzymes; and (5) biomimetic remineralization of the water-filled collagen matrix using analogs of matrix proteins to progressively replace water with intrafibrillar and extrafibrillar apatites to exclude exogenous collagenolytic enzymes and fossilize endogenous collagenolytic enzymes. A combination of several of these strategies should result in overcoming the critical barriers to progress currently encountered in dentin bonding.

Liu Y, Tjäderhane L, Breschi L, Mazzoni A, Li N, Mao J, et al. (2011). Limitations in bonding to dentin and experimental strategies to prevent bond degradation. JOURNAL OF DENTAL RESEARCH, 90(8), 953-968 [10.1177/0022034510391799].

Limitations in bonding to dentin and experimental strategies to prevent bond degradation.

BRESCHI, LORENZO;MAZZONI, ANNALISA;
2011

Abstract

The limited durability of resin-dentin bonds severely compromises the lifetime of tooth-colored restorations. Bond degradation occurs via hydrolysis of suboptimally polymerized hydrophilic resin components and degradation of water-rich, resin-sparse collagen matrices by matrix metalloproteinases (MMPs) and cysteine cathepsins. This review examined data generated over the past three years on five experimental strategies developed by different research groups for extending the longevity of resin-dentin bonds. They include: (1) increasing the degree of conversion and esterase resistance of hydrophilic adhesives; (2) the use of broad-spectrum inhibitors of collagenolytic enzymes, including novel inhibitor functional groups grafted to methacrylate resins monomers to produce anti-MMP adhesives; (3) the use of cross-linking agents for silencing the activities of MMP and cathepsins that irreversibly alter the 3-D structures of their catalytic/allosteric domains; (4) ethanol wet-bonding with hydrophobic resins to completely replace water from the extrafibrillar and intrafibrillar collagen compartments and immobilize the collagenolytic enzymes; and (5) biomimetic remineralization of the water-filled collagen matrix using analogs of matrix proteins to progressively replace water with intrafibrillar and extrafibrillar apatites to exclude exogenous collagenolytic enzymes and fossilize endogenous collagenolytic enzymes. A combination of several of these strategies should result in overcoming the critical barriers to progress currently encountered in dentin bonding.
2011
Liu Y, Tjäderhane L, Breschi L, Mazzoni A, Li N, Mao J, et al. (2011). Limitations in bonding to dentin and experimental strategies to prevent bond degradation. JOURNAL OF DENTAL RESEARCH, 90(8), 953-968 [10.1177/0022034510391799].
Liu Y; Tjäderhane L; Breschi L; Mazzoni A; Li N; Mao J; Pashley DH; Tay FR.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/263057
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 141
  • Scopus 567
  • ???jsp.display-item.citation.isi??? 494
social impact