This paper presents an iterative method for the computation of approximate solutions of large linear discrete ill-posed problems by Lavrentiev regularization. The method exploits the connection between Lanczos tridiagonalization and Gauss quadrature to determine inexpensively computable lower and upper bounds for certain functionals. This approach to bound functionals was first described in a paper by Dahlquist, Eisenstat, and Golub. A suitable value of the regularization parameter is determined by a modification of the discrepancy principle

S. Morigi, F. Sgallari, L.Reichel (2006). An Iterative Lavrentiev regularization method. BIT, 46(3), 589-606 [10.1007/s10543-006-0070-3].

An Iterative Lavrentiev regularization method

MORIGI, SERENA;SGALLARI, FIORELLA;
2006

Abstract

This paper presents an iterative method for the computation of approximate solutions of large linear discrete ill-posed problems by Lavrentiev regularization. The method exploits the connection between Lanczos tridiagonalization and Gauss quadrature to determine inexpensively computable lower and upper bounds for certain functionals. This approach to bound functionals was first described in a paper by Dahlquist, Eisenstat, and Golub. A suitable value of the regularization parameter is determined by a modification of the discrepancy principle
2006
BIT
S. Morigi, F. Sgallari, L.Reichel (2006). An Iterative Lavrentiev regularization method. BIT, 46(3), 589-606 [10.1007/s10543-006-0070-3].
S. Morigi; F. Sgallari; L.Reichel
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/25856
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact