A "Holy Grail" of hydrology is to understand catchment processes well enough that models can provide detailed simulations across a variety of hydrologic settings at multiple spatio-temporal scales, and under changing environmental conditions. Clearly, this cannot be achieved only through intensive place-based investigation at a small number of heavily instrumented catchments, or by regionalization methods that do not fully exploit our understanding of hydrology. Here, we discuss the need to actively promote and pursue the use of a "large catchment sample" approach to modeling the rainfall-runoff process, thereby balancing depth with breadth. We examine the history of such investigations, discuss the benefits (improved process understanding resulting in robustness of prediction at ungaged locations and under change), examine some practical challenges to implementation and, finally, provide perspectives on issues that need to be taken into account as we move forward. Ultimately, our objective is to provoke further discussion and participation, and to promote a potentially important theme for the upcoming IAHS Scientific Decade entitled "Panta Rhei".
H. V. Gupta, C. Perrin, R. Kumar, G. Bloeschl, M. Clark, A. Montanari, et al. (2013). Large-sample hydrology: a need to balance depth with breadth. HYDROLOGY AND EARTH SYSTEM SCIENCES DISCUSSIONS, 10, 9147-9189 [10.5194/hessd-10-9147-2013].
Large-sample hydrology: a need to balance depth with breadth
MONTANARI, ALBERTO;
2013
Abstract
A "Holy Grail" of hydrology is to understand catchment processes well enough that models can provide detailed simulations across a variety of hydrologic settings at multiple spatio-temporal scales, and under changing environmental conditions. Clearly, this cannot be achieved only through intensive place-based investigation at a small number of heavily instrumented catchments, or by regionalization methods that do not fully exploit our understanding of hydrology. Here, we discuss the need to actively promote and pursue the use of a "large catchment sample" approach to modeling the rainfall-runoff process, thereby balancing depth with breadth. We examine the history of such investigations, discuss the benefits (improved process understanding resulting in robustness of prediction at ungaged locations and under change), examine some practical challenges to implementation and, finally, provide perspectives on issues that need to be taken into account as we move forward. Ultimately, our objective is to provoke further discussion and participation, and to promote a potentially important theme for the upcoming IAHS Scientific Decade entitled "Panta Rhei".I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.