Paleosol stratigraphy, a technique commonly applied in basin-margin settings to depict cyclic alluvial architecture on time scales of 10-100. ky, can be consistent with regional accommodation trends at even higher temporal resolution (1-10. ky), having strong implications for the sequence stratigraphy of late Quaternary, non-marine deposits. Three closely-spaced late Pleistocene paleosols (P1-P3), dating back approximately to 42-39, 35-31, and 29-26. cal. kyr BP, respectively, form prominent stratigraphic markers across a lithologically homogeneous interfluve succession in the subsurface of Bologna, close to the Apenninic foothills. These paleosols are weakly developed (Inceptisols) and can be tracked continuously for 6. km across the triangle-shaped interchannel zone between two gravel/sand-filled channel systems (Reno and Savena rivers). In particular, the thickest paleosol (P3) is a distinctive stiff horizon that can be traced into laterally extensive, erosional-based fluvial bodies. We infer the correlation between (P3) soil development (and channel downcutting) and the final stage of the stepwise Late Pleistocene sea-level fall that culminated at the marine isotope stage 3/2 transition around 29. cal. kyr BP (low accommodation systems tract). A fourth laterally extensive Inceptisol, encompassing the Pleistocene-Holocene boundary (PH), represents the major phase of soil development since the Last Glacial Maximum and is inferred to be related to channel entrenchment at the onset of the Younger Dryas. With the exception of the Iron Age-Roman paleosol, which reflects a predominantly anthropogenic control, the Holocene paleosols are laterally discontinuous and invariably more immature (Entisols) than their Pleistocene counterparts. This trend of decreasing paleosol development (and correlatability) upsection is interpreted to reflect increasing (transgressive-equivalent) accommodation during sea-level rise, thus confirming the possible extension of models used to interpret the ancient rock record to short-term depositional cycles.

Paleosol architecture of a late Quaternary basin–margin sequence and its implications for high-resolution, non-marine sequence stratigraphy / Alessandro Amorosi;Luigi Bruno;Veronica Rossi;Paolo Severi;Irka Hajdas. - In: GLOBAL AND PLANETARY CHANGE. - ISSN 0921-8181. - STAMPA. - 112:(2014), pp. 12-25. [10.1016/j.gloplacha.2013.10.007]

Paleosol architecture of a late Quaternary basin–margin sequence and its implications for high-resolution, non-marine sequence stratigraphy

AMOROSI, ALESSANDRO;BRUNO, LUIGI;ROSSI, VERONICA;
2014

Abstract

Paleosol stratigraphy, a technique commonly applied in basin-margin settings to depict cyclic alluvial architecture on time scales of 10-100. ky, can be consistent with regional accommodation trends at even higher temporal resolution (1-10. ky), having strong implications for the sequence stratigraphy of late Quaternary, non-marine deposits. Three closely-spaced late Pleistocene paleosols (P1-P3), dating back approximately to 42-39, 35-31, and 29-26. cal. kyr BP, respectively, form prominent stratigraphic markers across a lithologically homogeneous interfluve succession in the subsurface of Bologna, close to the Apenninic foothills. These paleosols are weakly developed (Inceptisols) and can be tracked continuously for 6. km across the triangle-shaped interchannel zone between two gravel/sand-filled channel systems (Reno and Savena rivers). In particular, the thickest paleosol (P3) is a distinctive stiff horizon that can be traced into laterally extensive, erosional-based fluvial bodies. We infer the correlation between (P3) soil development (and channel downcutting) and the final stage of the stepwise Late Pleistocene sea-level fall that culminated at the marine isotope stage 3/2 transition around 29. cal. kyr BP (low accommodation systems tract). A fourth laterally extensive Inceptisol, encompassing the Pleistocene-Holocene boundary (PH), represents the major phase of soil development since the Last Glacial Maximum and is inferred to be related to channel entrenchment at the onset of the Younger Dryas. With the exception of the Iron Age-Roman paleosol, which reflects a predominantly anthropogenic control, the Holocene paleosols are laterally discontinuous and invariably more immature (Entisols) than their Pleistocene counterparts. This trend of decreasing paleosol development (and correlatability) upsection is interpreted to reflect increasing (transgressive-equivalent) accommodation during sea-level rise, thus confirming the possible extension of models used to interpret the ancient rock record to short-term depositional cycles.
2014
Paleosol architecture of a late Quaternary basin–margin sequence and its implications for high-resolution, non-marine sequence stratigraphy / Alessandro Amorosi;Luigi Bruno;Veronica Rossi;Paolo Severi;Irka Hajdas. - In: GLOBAL AND PLANETARY CHANGE. - ISSN 0921-8181. - STAMPA. - 112:(2014), pp. 12-25. [10.1016/j.gloplacha.2013.10.007]
Alessandro Amorosi;Luigi Bruno;Veronica Rossi;Paolo Severi;Irka Hajdas
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/252732
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 42
social impact