This paper provides a new technique for solving the static analysis of arbitrarily shaped composite plates by using Strong Formulation Finite Element Method (SFEM). Several papers in literature by the authors have presented the proposed technique as an extension of the classic Generalized Differential Quadrature (GDQ) procedure. The present methodology joins the high accuracy of the strong formulation with the versatility of the well-known Finite Element Method (FEM). The continuity conditions among the elements is carried out by the compatibility or continuity conditions. The mapping technique is used to transform both the governing differential equations and the compatibility conditions between two adjacent sub-domains into the regular master element in the computational space. The numerical implementation of the global algebraic system obtained by the technique at issue is easy and straightforward. The main novelty of this paper is the application of the stress and strain recovery once the displacement parameters are evaluated. Computer investigations concerning a large number of composite plates have been carried out. SFEM results are compared with those presented in literature and a perfect agreement is observed.
Nicholas Fantuzzi, Francesco Tornabene (2014). Strong Formulation Finite Element Method for Arbitrarily Shaped Laminated Plates - I. Theoretical Analysis. ADVANCES IN AIRCRAFT AND SPACECRAFT SCIENCE, 1(2), 124-142 [10.12989/aas.2014.1.2.125].
Strong Formulation Finite Element Method for Arbitrarily Shaped Laminated Plates - I. Theoretical Analysis
FANTUZZI, NICHOLAS;TORNABENE, FRANCESCO
2014
Abstract
This paper provides a new technique for solving the static analysis of arbitrarily shaped composite plates by using Strong Formulation Finite Element Method (SFEM). Several papers in literature by the authors have presented the proposed technique as an extension of the classic Generalized Differential Quadrature (GDQ) procedure. The present methodology joins the high accuracy of the strong formulation with the versatility of the well-known Finite Element Method (FEM). The continuity conditions among the elements is carried out by the compatibility or continuity conditions. The mapping technique is used to transform both the governing differential equations and the compatibility conditions between two adjacent sub-domains into the regular master element in the computational space. The numerical implementation of the global algebraic system obtained by the technique at issue is easy and straightforward. The main novelty of this paper is the application of the stress and strain recovery once the displacement parameters are evaluated. Computer investigations concerning a large number of composite plates have been carried out. SFEM results are compared with those presented in literature and a perfect agreement is observed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.