The paper proposes a new approach for identifying linear dynamic errors–in–variables (EIV) models, whose input and output are affected by additive white noise. The method is based on a nonlinear system of equations consisting of part of the compensated normal equations and of a set of high order Yule–Walker equations. This system allows mapping the EIV identification problem into a quadratic eigenvalue problem that, in turn, can be mapped into a linear generalized eigenvalue problem. The system parameters are thus estimated without requiring the use of iterative identification algorithms. The effectiveness of the method has been tested by means of Monte Carlo simulations and compared with those of other EIV identification methods.

R. Diversi, U. Soverini (2013). Identification of errors-in-variables models as a quadratic eigenvalue problem.

Identification of errors-in-variables models as a quadratic eigenvalue problem

DIVERSI, ROBERTO;SOVERINI, UMBERTO
2013

Abstract

The paper proposes a new approach for identifying linear dynamic errors–in–variables (EIV) models, whose input and output are affected by additive white noise. The method is based on a nonlinear system of equations consisting of part of the compensated normal equations and of a set of high order Yule–Walker equations. This system allows mapping the EIV identification problem into a quadratic eigenvalue problem that, in turn, can be mapped into a linear generalized eigenvalue problem. The system parameters are thus estimated without requiring the use of iterative identification algorithms. The effectiveness of the method has been tested by means of Monte Carlo simulations and compared with those of other EIV identification methods.
2013
Proceedings of the 12th European Control Conference (ECC 2013)
1896
1901
R. Diversi, U. Soverini (2013). Identification of errors-in-variables models as a quadratic eigenvalue problem.
R. Diversi; U. Soverini
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/239488
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact