The repressor element-1 (RE-1) silencing transcription factor (REST) interacts with an RE-1 cis element and represses the transcription of neuron-specific genes in neuronal progenitors but is down-regulated in post-mitotic neurons. We report that REST expression is modified, in a time-dependent manner, in SH-SY5Y neuroblastoma cells exposed to insulin-like growth factor I (IGF-I), a polypeptide hormone affecting various aspects of neuronal induction and maturation. REST is increased in cells treated with IGF-I for 2 days and then declines in 5-day-treated cells concomitant with a progressive neurite extension. To investigate any role played by REST in neurodifferentiation by IGF-I, we employed an antisense oligonucleotide (AS-ODN) complementary to REST mRNA. In AS-ODN-treated cells, the effects elicited by IGF-I on cell proliferation are not influenced whereas a marked decrease of REST significantly increases neurite elongation without any gross perturbation of neurogenesis. Synapsin I and betaIII-tubulin gene promoters contain an RE-1 motif and their transcription is repressed by REST; both of them are increased in cells exposed to IGF-I for 5 days and further elevated by AS-ODN treatment. A parallel increase of growth cone-associated protein 43, a protein chosen as a neuronal marker not directly regulated by REST, is also observed. Therefore, REST is elevated during early steps of neural induction by IGF-I and could contribute to down-regulate genes not yet required by the differentiation program while it declines later for the acquisition of neural phenotypes. These results suggest a model in which differentiating neuroblastoma cells determine their extent of neurite outgrowth on the basis of REST disappearance.

Di Toro R., Baiula M., Spampinato S. (2005). Expression of the repressor element-1 silencing transcription factor (REST) is influenced by insulin-like growth factor-I in differentiating human neuroblastoma cells. EUROPEAN JOURNAL OF NEUROSCIENCE, 21, 46-58.

Expression of the repressor element-1 silencing transcription factor (REST) is influenced by insulin-like growth factor-I in differentiating human neuroblastoma cells.

DI TORO, ROSANNA;BAIULA, MONICA;SPAMPINATO, SANTI MARIO
2005

Abstract

The repressor element-1 (RE-1) silencing transcription factor (REST) interacts with an RE-1 cis element and represses the transcription of neuron-specific genes in neuronal progenitors but is down-regulated in post-mitotic neurons. We report that REST expression is modified, in a time-dependent manner, in SH-SY5Y neuroblastoma cells exposed to insulin-like growth factor I (IGF-I), a polypeptide hormone affecting various aspects of neuronal induction and maturation. REST is increased in cells treated with IGF-I for 2 days and then declines in 5-day-treated cells concomitant with a progressive neurite extension. To investigate any role played by REST in neurodifferentiation by IGF-I, we employed an antisense oligonucleotide (AS-ODN) complementary to REST mRNA. In AS-ODN-treated cells, the effects elicited by IGF-I on cell proliferation are not influenced whereas a marked decrease of REST significantly increases neurite elongation without any gross perturbation of neurogenesis. Synapsin I and betaIII-tubulin gene promoters contain an RE-1 motif and their transcription is repressed by REST; both of them are increased in cells exposed to IGF-I for 5 days and further elevated by AS-ODN treatment. A parallel increase of growth cone-associated protein 43, a protein chosen as a neuronal marker not directly regulated by REST, is also observed. Therefore, REST is elevated during early steps of neural induction by IGF-I and could contribute to down-regulate genes not yet required by the differentiation program while it declines later for the acquisition of neural phenotypes. These results suggest a model in which differentiating neuroblastoma cells determine their extent of neurite outgrowth on the basis of REST disappearance.
2005
Di Toro R., Baiula M., Spampinato S. (2005). Expression of the repressor element-1 silencing transcription factor (REST) is influenced by insulin-like growth factor-I in differentiating human neuroblastoma cells. EUROPEAN JOURNAL OF NEUROSCIENCE, 21, 46-58.
Di Toro R.; Baiula M.; Spampinato S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/23507
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact