In this paper we will study the equation $$\Delta^2 u=S_2(D^2u),\quad \Omega\subset\mathbb{R}^N,$$ with $N=3,$ where $ S_2(D^2u)(x)=\sum_{1\leq i<j\leq {N}}\lambda_i(x)\lambda_j(x)$, being $\lambda_i,$ the solutions to the equation $$ {\rm det}\left(\lambda I-D^2u(x)\right)=0,$$ $i=1,\dots,N,$ and $\Omega$ is a bounded domain with smooth boundary. We deal with several boundary conditions looking for the appropriate framework to get existence and multiplicity of nontrivial solutions. This kind of equation is related to some models of growth, and for this reason it is natural to study the effect of zero order local reaction terms of the type $F_{\lambda}(x,u)=\lambda|u|^{p-1}u$, with $\lambda\in\mathbb{R}$, $\lambda>0$, and $0<p<\infty$, and also the solvability of the boundary problems with a source term $f$ satisfying some integrability hypotheses.

Fausto Ferrari, Maria Medina, Ireneo Peral (2014). Biharmonic elliptic problems involving the 2nd Hessian operator. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 51(3-4), 867-886 [10.1007/s00526-013-0698-1].

Biharmonic elliptic problems involving the 2nd Hessian operator

FERRARI, FAUSTO;
2014

Abstract

In this paper we will study the equation $$\Delta^2 u=S_2(D^2u),\quad \Omega\subset\mathbb{R}^N,$$ with $N=3,$ where $ S_2(D^2u)(x)=\sum_{1\leq i0$, and $0
2014
Fausto Ferrari, Maria Medina, Ireneo Peral (2014). Biharmonic elliptic problems involving the 2nd Hessian operator. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 51(3-4), 867-886 [10.1007/s00526-013-0698-1].
Fausto Ferrari;Maria Medina;Ireneo Peral
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/232471
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact