Recently, many national Environmental Agencies are interested to provide the citizens and public health decision-makers with visual and easy access to air quality information. Short-term air pollution predictions are usually needed as high resolution spatial maps for environmental regulatory purposes. We develop a hierarchical spatio-temporalmodel to enable use of different sources of information in order to provide short-term air pollution forecasting.

Bruno F., Paci L. (2013). Hierarchical spatio-temporal models for short-term predictions of air pollution data. Milano : Vita e Pensiero.

Hierarchical spatio-temporal models for short-term predictions of air pollution data

BRUNO, FRANCESCA;PACI, LUCIA
2013

Abstract

Recently, many national Environmental Agencies are interested to provide the citizens and public health decision-makers with visual and easy access to air quality information. Short-term air pollution predictions are usually needed as high resolution spatial maps for environmental regulatory purposes. We develop a hierarchical spatio-temporalmodel to enable use of different sources of information in order to provide short-term air pollution forecasting.
2013
Advances in Latent Variables
1
4
Bruno F., Paci L. (2013). Hierarchical spatio-temporal models for short-term predictions of air pollution data. Milano : Vita e Pensiero.
Bruno F.; Paci L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/231470
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact