Family polymorphism has been proposed for object-oriented languages as a solution to supporting reusable yet type-safe mutually recursive classes. A key idea of family polymorphism is the notion of families, which are used to group mutually recursive classes. In the original proposal, due to the design decision that families are represented by objects, dependent types had to be introduced, resulting in a rather complex type system. In this paper, we propose a simpler solution of lightweight family polymorphism, based on the idea that families are represented by classes rather than objects. This change makes the type system significantly simpler without losing much expressibility of the language. Moreover, ''family-polymorphic'' methods now take a form of parametric methods; thus it is easy to apply the Java-style type inference. To rigorously show that our approach is safe, we formalize the set of language features on top of Featherweight Java and prove the type system is sound. An algorithm of type inference for family-polymorphic method invocations is also formalized and proved to be correct.
Atsushi Igarashi, Saito Chieri, Mirko Viroli (2005). Lightweight family polymorphism. Heildeberg Berlin : Springer [10.1007/11575467].
Lightweight family polymorphism
VIROLI, MIRKO
2005
Abstract
Family polymorphism has been proposed for object-oriented languages as a solution to supporting reusable yet type-safe mutually recursive classes. A key idea of family polymorphism is the notion of families, which are used to group mutually recursive classes. In the original proposal, due to the design decision that families are represented by objects, dependent types had to be introduced, resulting in a rather complex type system. In this paper, we propose a simpler solution of lightweight family polymorphism, based on the idea that families are represented by classes rather than objects. This change makes the type system significantly simpler without losing much expressibility of the language. Moreover, ''family-polymorphic'' methods now take a form of parametric methods; thus it is easy to apply the Java-style type inference. To rigorously show that our approach is safe, we formalize the set of language features on top of Featherweight Java and prove the type system is sound. An algorithm of type inference for family-polymorphic method invocations is also formalized and proved to be correct.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.