We prove that the smallest degree of an apolar 0-dimensional scheme of a general cubic form in n + 1 variables is at most 2n + 2, when n >= 8, and therefore smaller than the rank of the form. For the general reducible cubic form the smallest degree of an apolar subscheme is n + 2, while the rank is at least 2n.

Alessandra Bernardi, Kristian Ranestad (2013). On the cactus rank of cubic forms. JOURNAL OF SYMBOLIC COMPUTATION, 50, 291-297 [10.1016/j.jsc.2012.08.001].

On the cactus rank of cubic forms

BERNARDI, ALESSANDRA;
2013

Abstract

We prove that the smallest degree of an apolar 0-dimensional scheme of a general cubic form in n + 1 variables is at most 2n + 2, when n >= 8, and therefore smaller than the rank of the form. For the general reducible cubic form the smallest degree of an apolar subscheme is n + 2, while the rank is at least 2n.
2013
Alessandra Bernardi, Kristian Ranestad (2013). On the cactus rank of cubic forms. JOURNAL OF SYMBOLIC COMPUTATION, 50, 291-297 [10.1016/j.jsc.2012.08.001].
Alessandra Bernardi; Kristian Ranestad
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/222678
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 33
social impact