We study the case of a real homogeneous polynomial P whose minimal real and complex decompositions in terms of powers of linear forms are different. We prove that if the sum of the complex and the real ranks of P is at most 3(deg(P))-1, then the difference of the two decompositions is completely determined either on a line or on a conic or two disjoint lines.

Edoardo Ballico, Alessandra Bernardi (2013). Real and Complex Rank for Real Symmetric Tensors with Low Ranks. ALGEBRA, 2013, 1-5 [10.1155/2013/794054].

Real and Complex Rank for Real Symmetric Tensors with Low Ranks

BERNARDI, ALESSANDRA
2013

Abstract

We study the case of a real homogeneous polynomial P whose minimal real and complex decompositions in terms of powers of linear forms are different. We prove that if the sum of the complex and the real ranks of P is at most 3(deg(P))-1, then the difference of the two decompositions is completely determined either on a line or on a conic or two disjoint lines.
2013
Edoardo Ballico, Alessandra Bernardi (2013). Real and Complex Rank for Real Symmetric Tensors with Low Ranks. ALGEBRA, 2013, 1-5 [10.1155/2013/794054].
Edoardo Ballico; Alessandra Bernardi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/222676
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact