We describe the stratification by tensor rank of the points belonging to the tangent developable of any Segre variety. We give algorithms to compute the rank and a decomposition of a tensor belonging to the secant variety of lines of any Segre variety. We prove Comon's conjecture on the rank of symmetric tensors for those tensors belonging to tangential varieties to Veronese varieties.

Edoardo Ballico, Alessandra Bernardi (2013). Tensor ranks on tangent developable of Segre varieties. LINEAR & MULTILINEAR ALGEBRA, 61, 881-894 [10.1080/03081087.2012.716430].

Tensor ranks on tangent developable of Segre varieties

BERNARDI, ALESSANDRA
2013

Abstract

We describe the stratification by tensor rank of the points belonging to the tangent developable of any Segre variety. We give algorithms to compute the rank and a decomposition of a tensor belonging to the secant variety of lines of any Segre variety. We prove Comon's conjecture on the rank of symmetric tensors for those tensors belonging to tangential varieties to Veronese varieties.
2013
Edoardo Ballico, Alessandra Bernardi (2013). Tensor ranks on tangent developable of Segre varieties. LINEAR & MULTILINEAR ALGEBRA, 61, 881-894 [10.1080/03081087.2012.716430].
Edoardo Ballico; Alessandra Bernardi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/222673
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact