If $X\subset \mathbb{P}^n$ is a projective non degenerate variety, the $X$-rank of a point $P\in \mathbb{P}^n$ is defined to be the minimum integer $r$ such that $P$ belongs to the span of $r$ points of $X$. We describe the complete stratification of the fourth secant variety of any Veronese variety $X$ via the $X$-rank. This result has an equivalent translation in terms both of symmetric tensors and homogeneous polynomials. It allows to classify all the possible integers $r$ that can occur in the minimal decomposition of either a symmetric tensor or a homogeneous polynomial of $X$-border rank $4$ (i.e. contained in the fourth secant variety) as a linear combination of either completely decomposable tensors or powers of linear forms respectively.
Edoardo Ballico, Alessandra Bernardi (2013). Stratification of the fourth secant variety of Veronese varieties via the symmetric rank. ADVANCES IN PURE AND APPLIED MATHEMATICS, 4(2), 215-250 [10.1515/apam-2013-0015].
Stratification of the fourth secant variety of Veronese varieties via the symmetric rank
BERNARDI, ALESSANDRA
2013
Abstract
If $X\subset \mathbb{P}^n$ is a projective non degenerate variety, the $X$-rank of a point $P\in \mathbb{P}^n$ is defined to be the minimum integer $r$ such that $P$ belongs to the span of $r$ points of $X$. We describe the complete stratification of the fourth secant variety of any Veronese variety $X$ via the $X$-rank. This result has an equivalent translation in terms both of symmetric tensors and homogeneous polynomials. It allows to classify all the possible integers $r$ that can occur in the minimal decomposition of either a symmetric tensor or a homogeneous polynomial of $X$-border rank $4$ (i.e. contained in the fourth secant variety) as a linear combination of either completely decomposable tensors or powers of linear forms respectively.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.