Past observational and numerical studies indicated that the hot gaseous haloes of early-type galaxies may be sensitive to the stellar kinematics. With high-resolution ZEUS 2D hydrosimulations, we study the hot gas evolution in flat early-type galaxies of fixed (stellar plus dark) mass distribution, but with variable amounts of azimuthal velocity dispersion and rotational support, including the possibility of a (counter) rotating inner disc. The hot gas is fed by stellar mass-losses, and heated by supernova explosions and thermalization of stellar motions. The simulations provide γth, the ratio between the heating due to the relative velocity between the stellar streaming and the interstellar medium bulk flow, and the heating attainable by complete thermalization of the stellar streaming. We find that (1) X-ray emission-weighted temperatures and luminosities match observed values and are larger in fully velocity dispersion supported systems; X-ray isophotes are boxy where rotation is significant; (2) γth ≃ 0.1-0.2 for isotropic rotators and (3) γth ≃ 1 for systems with an inner (counter) rotating disc. The lower X-ray luminosities of isotropic rotators are not explained just by their low γth but by a complicated flow structure and evolution, consequence of the angular momentum stored at large radii. Rotation is therefore important to explain the lower average X-ray emission and temperature observed in flat and more rotationally supported galaxies.

Negri A., Ciotti L., Pellegrini S. (2014). The effects of stellar dynamics on the X-ray emission of flat early-type galaxies. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 439, 823-844 [10.1093/mnras/stt2505].

The effects of stellar dynamics on the X-ray emission of flat early-type galaxies

NEGRI, ANDREA;CIOTTI, LUCA;PELLEGRINI, SILVIA
2014

Abstract

Past observational and numerical studies indicated that the hot gaseous haloes of early-type galaxies may be sensitive to the stellar kinematics. With high-resolution ZEUS 2D hydrosimulations, we study the hot gas evolution in flat early-type galaxies of fixed (stellar plus dark) mass distribution, but with variable amounts of azimuthal velocity dispersion and rotational support, including the possibility of a (counter) rotating inner disc. The hot gas is fed by stellar mass-losses, and heated by supernova explosions and thermalization of stellar motions. The simulations provide γth, the ratio between the heating due to the relative velocity between the stellar streaming and the interstellar medium bulk flow, and the heating attainable by complete thermalization of the stellar streaming. We find that (1) X-ray emission-weighted temperatures and luminosities match observed values and are larger in fully velocity dispersion supported systems; X-ray isophotes are boxy where rotation is significant; (2) γth ≃ 0.1-0.2 for isotropic rotators and (3) γth ≃ 1 for systems with an inner (counter) rotating disc. The lower X-ray luminosities of isotropic rotators are not explained just by their low γth but by a complicated flow structure and evolution, consequence of the angular momentum stored at large radii. Rotation is therefore important to explain the lower average X-ray emission and temperature observed in flat and more rotationally supported galaxies.
2014
Negri A., Ciotti L., Pellegrini S. (2014). The effects of stellar dynamics on the X-ray emission of flat early-type galaxies. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 439, 823-844 [10.1093/mnras/stt2505].
Negri A.; Ciotti L.; Pellegrini S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/218077
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact