Autoregulation is a vital protective mechanism that maintains stable cerebral blood flow as cerebral perfusion pressure changes. We contrasted cerebral autoregulation across sleep-wake states, as little is known about its effectiveness during sleep. Newborn lambs (n= 9) were instrumented to measure cerebral blood flow (flow probe on the superior sagittal sinus) and cerebral perfusion pressure, then studied during active sleep (AS), quiet sleep (QS) and quiet wakefulness (QW). We generated cerebral autoregulation curves by inflating an occluder cuff around the brachiocephalic artery thereby lowering cerebral perfusion pressure. Baseline cerebral blood flow was higher (P < 0.05) and cerebral vascular resistance lower (P < 0.05) in AS than in QW (76 +/- 8% and 133 +/- 15%, respectively, of the AS value, mean +/-s.d.) and in QS (66 +/- 11% and 158 +/- 30%). The autoregulation curve in AS differed from that in QS and QW in three key respects: firstly, the plateau was elevated relative to QS and QW (P < 0.05); secondly, the lower limit of the curve (breakpoint) was higher (P < 0.05) in AS (50 mmHg) than QS (45 mmHg); and thirdly, the slope of the descending limb below the breakpoint was greater (P < 0.05) in AS than QS (56% of AS) or QW (56% of AS). Although autoregulation functions in AS, the higher breakpoint and greater slope of the descending limb may place the brain at risk for vascular compromise should hypotension occur.

Autoregulation of the cerebral circulation during sleep in newborn lambs / Grant D.A.; Franzini C.; Wild J.; Eede K.J.; Walker A.M.. - In: THE JOURNAL OF PHYSIOLOGY. - ISSN 0022-3751. - STAMPA. - 564:(2005), pp. 923-930.

Autoregulation of the cerebral circulation during sleep in newborn lambs

FRANZINI, CARLO;
2005

Abstract

Autoregulation is a vital protective mechanism that maintains stable cerebral blood flow as cerebral perfusion pressure changes. We contrasted cerebral autoregulation across sleep-wake states, as little is known about its effectiveness during sleep. Newborn lambs (n= 9) were instrumented to measure cerebral blood flow (flow probe on the superior sagittal sinus) and cerebral perfusion pressure, then studied during active sleep (AS), quiet sleep (QS) and quiet wakefulness (QW). We generated cerebral autoregulation curves by inflating an occluder cuff around the brachiocephalic artery thereby lowering cerebral perfusion pressure. Baseline cerebral blood flow was higher (P < 0.05) and cerebral vascular resistance lower (P < 0.05) in AS than in QW (76 +/- 8% and 133 +/- 15%, respectively, of the AS value, mean +/-s.d.) and in QS (66 +/- 11% and 158 +/- 30%). The autoregulation curve in AS differed from that in QS and QW in three key respects: firstly, the plateau was elevated relative to QS and QW (P < 0.05); secondly, the lower limit of the curve (breakpoint) was higher (P < 0.05) in AS (50 mmHg) than QS (45 mmHg); and thirdly, the slope of the descending limb below the breakpoint was greater (P < 0.05) in AS than QS (56% of AS) or QW (56% of AS). Although autoregulation functions in AS, the higher breakpoint and greater slope of the descending limb may place the brain at risk for vascular compromise should hypotension occur.
2005
Autoregulation of the cerebral circulation during sleep in newborn lambs / Grant D.A.; Franzini C.; Wild J.; Eede K.J.; Walker A.M.. - In: THE JOURNAL OF PHYSIOLOGY. - ISSN 0022-3751. - STAMPA. - 564:(2005), pp. 923-930.
Grant D.A.; Franzini C.; Wild J.; Eede K.J.; Walker A.M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/21729
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact