Given a sequence x of elements of a commutative equidimensional noetherian ring R, cycles z_i(x,R) (i∈N) in the cycle group of polynomial rings over R are defined by generic residual intersections. The study of these cycles gives new insight into the theory for excess intersections in projective space developed by Stückrad and Vogel, in particular concerning the contribution to the intersection cycle of embedded components not defined over the base field.

R. Achilles, J. Stückrad (2014). Generic residual intersections and intersection numbers of movable components. JOURNAL OF PURE AND APPLIED ALGEBRA, 218(7), 1264-1290 [10.1016/j.jpaa.2013.11.017].

Generic residual intersections and intersection numbers of movable components

ACHILLES, HANS JOACHIM RUDIGER;
2014

Abstract

Given a sequence x of elements of a commutative equidimensional noetherian ring R, cycles z_i(x,R) (i∈N) in the cycle group of polynomial rings over R are defined by generic residual intersections. The study of these cycles gives new insight into the theory for excess intersections in projective space developed by Stückrad and Vogel, in particular concerning the contribution to the intersection cycle of embedded components not defined over the base field.
2014
R. Achilles, J. Stückrad (2014). Generic residual intersections and intersection numbers of movable components. JOURNAL OF PURE AND APPLIED ALGEBRA, 218(7), 1264-1290 [10.1016/j.jpaa.2013.11.017].
R. Achilles; J. Stückrad
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/213646
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact