We characterize $p-$harmonic functions in the Heisenberg group in terms of an asymptotic mean value property, where $1<p<\infty$, following the scheme described in \cite{MPR} for the Euclidean case. The new tool that allows us to consider the subelliptic case is a geometric lemma, Lemma \ref{lemma1} below, that relates the directions of the points of maxima and minima of a function on a small subelliptic ball with the unit horizontal gradient of that function.

Fausto Ferrari, Qing Liu, Juan Manfredi (2014). On the characterization of p-harmonic functions on the Heisenberg group by mean value properties. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 34(7), 2779-2793 [10.3934/dcds.2014.34.2779].

On the characterization of p-harmonic functions on the Heisenberg group by mean value properties

FERRARI, FAUSTO;
2014

Abstract

We characterize $p-$harmonic functions in the Heisenberg group in terms of an asymptotic mean value property, where $1
2014
Fausto Ferrari, Qing Liu, Juan Manfredi (2014). On the characterization of p-harmonic functions on the Heisenberg group by mean value properties. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 34(7), 2779-2793 [10.3934/dcds.2014.34.2779].
Fausto Ferrari;Qing Liu;Juan Manfredi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/212036
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact