In clinical research an early and prompt detection of the risk class of a new patient may really play a crucial role in determining the effectiveness of the treatment and, consequently, achieving a satisfying prognosis of the patient’s chances. There exists a number of popular rule-based algorithms for classification, whose performances are very attractive whenever data of large number of patients are available. However, when datasets only include data of a few hundred patients, the most common approaches give unstable results and developing effective decisionsupport systems become scientifically challenging. Since rules can be derived from different models as well as expert knowledge resources, each of them having its advantages and weaknesses, this article suggests a “hybrid” approach to address the classification problem when the number of patients is too small to effectively use a single technique only. The hybrid strategy was applied to a case study and its predictive performance was compared with performances of each single approach: due to the seriousness of a misclassification of high-risk patients, special attention was paid on the specificity. The results show that the hybrid strategy outperforms each single strategy involved.

L. Stracqualursi , P. Agati (2014). The Role of Classification Trees and Expert Knowledge in Building Bayesian networks: a Case Study in Medicine. COMMUNICATIONS IN STATISTICS. THEORY AND METHODS, 43(4), 839-850 [10.1080/03610926.2013.810268].

The Role of Classification Trees and Expert Knowledge in Building Bayesian networks: a Case Study in Medicine

STRACQUALURSI, LUISA;AGATI, PATRIZIA
2014

Abstract

In clinical research an early and prompt detection of the risk class of a new patient may really play a crucial role in determining the effectiveness of the treatment and, consequently, achieving a satisfying prognosis of the patient’s chances. There exists a number of popular rule-based algorithms for classification, whose performances are very attractive whenever data of large number of patients are available. However, when datasets only include data of a few hundred patients, the most common approaches give unstable results and developing effective decisionsupport systems become scientifically challenging. Since rules can be derived from different models as well as expert knowledge resources, each of them having its advantages and weaknesses, this article suggests a “hybrid” approach to address the classification problem when the number of patients is too small to effectively use a single technique only. The hybrid strategy was applied to a case study and its predictive performance was compared with performances of each single approach: due to the seriousness of a misclassification of high-risk patients, special attention was paid on the specificity. The results show that the hybrid strategy outperforms each single strategy involved.
2014
L. Stracqualursi , P. Agati (2014). The Role of Classification Trees and Expert Knowledge in Building Bayesian networks: a Case Study in Medicine. COMMUNICATIONS IN STATISTICS. THEORY AND METHODS, 43(4), 839-850 [10.1080/03610926.2013.810268].
L. Stracqualursi ; P. Agati
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/198330
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact