Light, elementary and soft linear logics are formal systems derived from Linear Logic, enjoying remarkable normalization properties. In this paper, we prove decidability of Elementary Affine Logic, EAL. The result is obtained by semantical means, first defining a class of phase models for EAL and then proving soundness and (strong) completeness, following Okada's technique. Phase models for Light Affine Logic and Soft Linear Logic are also defined and shown complete.

MARTINI S., DAL LAGO U. (2004). Phase Semantics and Decidability of Elementary Affine Logic. THEORETICAL COMPUTER SCIENCE, 318(3), 409-433 [10.1016/j.tcs.2004.02.037].

Phase Semantics and Decidability of Elementary Affine Logic

MARTINI, SIMONE;DAL LAGO, UGO
2004

Abstract

Light, elementary and soft linear logics are formal systems derived from Linear Logic, enjoying remarkable normalization properties. In this paper, we prove decidability of Elementary Affine Logic, EAL. The result is obtained by semantical means, first defining a class of phase models for EAL and then proving soundness and (strong) completeness, following Okada's technique. Phase models for Light Affine Logic and Soft Linear Logic are also defined and shown complete.
2004
MARTINI S., DAL LAGO U. (2004). Phase Semantics and Decidability of Elementary Affine Logic. THEORETICAL COMPUTER SCIENCE, 318(3), 409-433 [10.1016/j.tcs.2004.02.037].
MARTINI S.; DAL LAGO U.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1980
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 2
social impact