The paper investigates the diagnosis of rotor broken bars in field oriented controlled (FOC) double cage induction motor drives, using current and vibration signature analysis techniques. The Impact of the closed loop control system cannot be neglected when the detection of asymmetries in the machine are based on the signature analysis of electrical variables. The proposed diagnosis approach is based on optimized use of wavelet analysis by a pre-processing of phase current or axial/radial vibration signals. Thus, the time evolution of the tracked rotor fault components can be effectively analyzed. This paper shows also the relevance of the fault components computed from axial vibration signal in comparison to those coming from phase current and radial vibration signals. Cyclic fault quantification, issued from the wavelet analysis, has been introduced for accurate rotor fault detection. Experimental results show the validity of the proposed technique, leading to an effective diagnosis procedure for rotor broken bar in double cage induction motor.

Vibration signature analysis for rotor broken bar diagnosis in double cage induction motor drives / Di Tommaso A; Miceli R; Filippetti F; Rossi C; Gritli Y. - ELETTRONICO. - (2013), pp. 1814-1820. (Intervento presentato al convegno Power Engineering, Energy and Electrical Drives (POWERENG), 2013 Fourth International Conference on tenutosi a Istanbul, Turkey nel 13-17 May 2013) [10.1109/PowerEng.2013.6635893].

Vibration signature analysis for rotor broken bar diagnosis in double cage induction motor drives

FILIPPETTI, FIORENZO;ROSSI, CLAUDIO;GRITLI, YASSER
2013

Abstract

The paper investigates the diagnosis of rotor broken bars in field oriented controlled (FOC) double cage induction motor drives, using current and vibration signature analysis techniques. The Impact of the closed loop control system cannot be neglected when the detection of asymmetries in the machine are based on the signature analysis of electrical variables. The proposed diagnosis approach is based on optimized use of wavelet analysis by a pre-processing of phase current or axial/radial vibration signals. Thus, the time evolution of the tracked rotor fault components can be effectively analyzed. This paper shows also the relevance of the fault components computed from axial vibration signal in comparison to those coming from phase current and radial vibration signals. Cyclic fault quantification, issued from the wavelet analysis, has been introduced for accurate rotor fault detection. Experimental results show the validity of the proposed technique, leading to an effective diagnosis procedure for rotor broken bar in double cage induction motor.
2013
Proc. of Power Engineering, Energy and Electrical Drives (POWERENG), 2013 Fourth International Conference on
1814
1820
Vibration signature analysis for rotor broken bar diagnosis in double cage induction motor drives / Di Tommaso A; Miceli R; Filippetti F; Rossi C; Gritli Y. - ELETTRONICO. - (2013), pp. 1814-1820. (Intervento presentato al convegno Power Engineering, Energy and Electrical Drives (POWERENG), 2013 Fourth International Conference on tenutosi a Istanbul, Turkey nel 13-17 May 2013) [10.1109/PowerEng.2013.6635893].
Di Tommaso A; Miceli R; Filippetti F; Rossi C; Gritli Y
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/191073
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
social impact