We prove estimates, similar in form to the classical Aleksandrov estimates, for a Monge-Ampere type operator on the Heisenberg group. A notion of normal mapping does not seem to be available in this context and the method of our proof uses integration by parts. We first identify the null Lagrangian in the Heisenberg group and prove mononicity properties of Hessian integrals and oscillation estimates that lead to the construction of an analogue of Monge-Ampere measures for convex functions in the Heisenberg group.

Maximum and comparison principles for convex functions on the Heisenberg group

MONTANARI, ANNAMARIA
2004

Abstract

We prove estimates, similar in form to the classical Aleksandrov estimates, for a Monge-Ampere type operator on the Heisenberg group. A notion of normal mapping does not seem to be available in this context and the method of our proof uses integration by parts. We first identify the null Lagrangian in the Heisenberg group and prove mononicity properties of Hessian integrals and oscillation estimates that lead to the construction of an analogue of Monge-Ampere measures for convex functions in the Heisenberg group.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/1899
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 35
social impact