Consider in $L^2(R^l)$ the operator family $H(epsilon):=P_0(hbar,omega)+epsilon Q_0$. $P_0$ is the quantum harmonic oscillator with diophantine frequency vector $om$, $Q_0$ a bounded pseudodifferential operator with symbol holomorphic and decreasing to zero at infinity, and $epinR$. Then there exists $ep^ast >0$ with the property that if $|ep|

D.Borthwick, S.Graffi (2005). A Local Quantum Version of the Kolmogorov Theorem. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 257, 499-514 [10.1007/s00220-005-1299-4].

A Local Quantum Version of the Kolmogorov Theorem

GRAFFI, SANDRO
2005

Abstract

Consider in $L^2(R^l)$ the operator family $H(epsilon):=P_0(hbar,omega)+epsilon Q_0$. $P_0$ is the quantum harmonic oscillator with diophantine frequency vector $om$, $Q_0$ a bounded pseudodifferential operator with symbol holomorphic and decreasing to zero at infinity, and $epinR$. Then there exists $ep^ast >0$ with the property that if $|ep|
2005
D.Borthwick, S.Graffi (2005). A Local Quantum Version of the Kolmogorov Theorem. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 257, 499-514 [10.1007/s00220-005-1299-4].
D.Borthwick; S.Graffi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/18567
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact