Consider in $L^2(R^l)$ the operator family $H(epsilon):=P_0(hbar,omega)+epsilon Q_0$. $P_0$ is the quantum harmonic oscillator with diophantine frequency vector $om$, $Q_0$ a bounded pseudodifferential operator with symbol holomorphic and decreasing to zero at infinity, and $epinR$. Then there exists $ep^ast >0$ with the property that if $|ep|
Titolo: | A Local Quantum Version of the Kolmogorov Theorem |
Autore/i: | D. Borthwick; GRAFFI, SANDRO |
Autore/i Unibo: | |
Anno: | 2005 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00220-005-1299-4 |
Abstract: | Consider in $L^2(R^l)$ the operator family $H(epsilon):=P_0(hbar,omega)+epsilon Q_0$. $P_0$ is the quantum harmonic oscillator with diophantine frequency vector $om$, $Q_0$ a bounded pseudodifferential operator with symbol holomorphic and decreasing to zero at infinity, and $epinR$. Then there exists $ep^ast >0$ with the property that if $|ep| |
Data prodotto definitivo in UGOV: | 2005-10-17 15:42:22 |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.