Nanoparticles and nanocomposites are used in a wide range of applications in various fields, such as medicine, textiles, cosmetics, agriculture, optics, food packaging, optoelectronic devices, semiconductor devices, aerospace, construction and catalysis. Nanoparticles can be incorporated into polymeric nanocomposites. Polymeric nanocomposites consisting of inorganic nanoparticles and organic polymers represent a new class of materials that exhibit improved performance compared to their microparticle counterparts. It is therefore expected that they will advance the field of engineering applications. Incorporation of inorganic nanoparticles into a polymer matrix can significantly affect the properties of the matrix. The resulting composite might exhibit improved thermal, mechanical, rheological, electrical, catalytic, fire retardancy and optical properties. The properties of polymer composites depend on the type of nanoparticles that are incorporated, their size and shape,their concentration and their interactions with the polymer matrix. The main problem with polymer nanocomposites is the prevention of particle aggregation. It is difficult to produce monodispersed nanoparticles in a polymer matrix because nanoparticles agglomerate due to their specific surface area and volume effects. This problem can be overcome by modification of the surface of the inorganic particles. The modification improves the interfacial interactions between the inorganic particles and the polymer matrix. There are two ways to modify the surface of inorganic particles. The first is accomplished through surface absorption or reaction with small molecules, such as silane coupling agents, and the second method is based on grafting polymeric molecules through covalent bonding to the hydroxyl groups existing on the particles. The advantage of the second procedure over the first lies in the fact that the polymer-grafted particles can be designed with the desired properties through a proper selection of the species of the grafting monomers and the choice of grafting conditions.

Sarita Kango, Susheel Kalia, Annamaria Celli, James Njuguna, Youssef Habibi, Rajesh Kumara (2013). Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. PROGRESS IN POLYMER SCIENCE, 38, 1232-1261 [10.1016/j.progpolymsci.2013.02.003].

Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review

CELLI, ANNAMARIA;
2013

Abstract

Nanoparticles and nanocomposites are used in a wide range of applications in various fields, such as medicine, textiles, cosmetics, agriculture, optics, food packaging, optoelectronic devices, semiconductor devices, aerospace, construction and catalysis. Nanoparticles can be incorporated into polymeric nanocomposites. Polymeric nanocomposites consisting of inorganic nanoparticles and organic polymers represent a new class of materials that exhibit improved performance compared to their microparticle counterparts. It is therefore expected that they will advance the field of engineering applications. Incorporation of inorganic nanoparticles into a polymer matrix can significantly affect the properties of the matrix. The resulting composite might exhibit improved thermal, mechanical, rheological, electrical, catalytic, fire retardancy and optical properties. The properties of polymer composites depend on the type of nanoparticles that are incorporated, their size and shape,their concentration and their interactions with the polymer matrix. The main problem with polymer nanocomposites is the prevention of particle aggregation. It is difficult to produce monodispersed nanoparticles in a polymer matrix because nanoparticles agglomerate due to their specific surface area and volume effects. This problem can be overcome by modification of the surface of the inorganic particles. The modification improves the interfacial interactions between the inorganic particles and the polymer matrix. There are two ways to modify the surface of inorganic particles. The first is accomplished through surface absorption or reaction with small molecules, such as silane coupling agents, and the second method is based on grafting polymeric molecules through covalent bonding to the hydroxyl groups existing on the particles. The advantage of the second procedure over the first lies in the fact that the polymer-grafted particles can be designed with the desired properties through a proper selection of the species of the grafting monomers and the choice of grafting conditions.
2013
Sarita Kango, Susheel Kalia, Annamaria Celli, James Njuguna, Youssef Habibi, Rajesh Kumara (2013). Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. PROGRESS IN POLYMER SCIENCE, 38, 1232-1261 [10.1016/j.progpolymsci.2013.02.003].
Sarita Kango; Susheel Kalia; Annamaria Celli; James Njuguna; Youssef Habibi; Rajesh Kumara
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/183107
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1876
  • ???jsp.display-item.citation.isi??? 1691
social impact