We consider a map $u:\mathbb{R}^{n}\to \mathbb{R}^{m}$ , $n,m>1$ solution to a nonlinear systems of partial differential equations, or minimizer of a functional of the calculus of variations. It is well known that either the global or the local boundedness of $u$ cannot be obtained through truncation methods. This is due to the lack of maximum principles for general systems. Nevertheless in this paper we present a method for local boundedness of $u$ without assuming any condition on the boundary datum.

G. Cupini, P. Marcellini, E. Mascolo (2013). Local boundedness of solutions to some anisotropic elliptic systems. PROVIDENCE, RI 02940 USA : American Mathematical Society [10.1090/conm/595/11803].

Local boundedness of solutions to some anisotropic elliptic systems

CUPINI, GIOVANNI;
2013

Abstract

We consider a map $u:\mathbb{R}^{n}\to \mathbb{R}^{m}$ , $n,m>1$ solution to a nonlinear systems of partial differential equations, or minimizer of a functional of the calculus of variations. It is well known that either the global or the local boundedness of $u$ cannot be obtained through truncation methods. This is due to the lack of maximum principles for general systems. Nevertheless in this paper we present a method for local boundedness of $u$ without assuming any condition on the boundary datum.
2013
RECENT TRENDS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS II: STATIONARY PROBLEMS
169
186
G. Cupini, P. Marcellini, E. Mascolo (2013). Local boundedness of solutions to some anisotropic elliptic systems. PROVIDENCE, RI 02940 USA : American Mathematical Society [10.1090/conm/595/11803].
G. Cupini; P. Marcellini; E. Mascolo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/181482
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 25
social impact