A mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. A more general approach is however provided by the integral equation for the so-called continuous time random walk (CTRW), which can be understood as a random walk subordinated to a renewal process. We show how this integral equation reduces to our fractional diffusion equations by a properly scaled passage to the limit of compressed waiting times and jumps. The essential assumption is that the probabilities for waiting times and jumps behave asymptotically like powers with negative exponents related to the orders of the fractional derivatives. Illustrating examples are given, numerical results and plots of simulations are displayed.
R. Gorenflo, A. Vivoli, F. Mainardi (2004). Discrete and continuous random walk models for space-time fractional diffusion. NONLINEAR DYNAMICS, 38, 101-116 [10.1007/s11071-004-3749-5].
Discrete and continuous random walk models for space-time fractional diffusion
VIVOLI, ALESSANDRO;MAINARDI, FRANCESCO
2004
Abstract
A mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. A more general approach is however provided by the integral equation for the so-called continuous time random walk (CTRW), which can be understood as a random walk subordinated to a renewal process. We show how this integral equation reduces to our fractional diffusion equations by a properly scaled passage to the limit of compressed waiting times and jumps. The essential assumption is that the probabilities for waiting times and jumps behave asymptotically like powers with negative exponents related to the orders of the fractional derivatives. Illustrating examples are given, numerical results and plots of simulations are displayed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.