An analytical framework for the performance evaluation of a dense energy-efficient wireless sensor network (WSN), enabling distributed collaborative environment monitoring, is developed. We address the estimation of a target multidimensional process by means of samples captured by nodes randomly and uniformly distributed and transmitted to a collector through a self-organizing clustered network. The estimation in the presence and in the absence of collaborative signal processing with different types of data interpolators are compared in terms of both process estimation error and network life-time. Our analytical model, aimed at providing useful information for WSN design, takes many aspects into account, such as distance-dependent path loss and shadowing, energy consumption, information routing, process estimation quality, node density, transmission protocol and system parameters. As an example result, fixing requirements on estimation errors and network life-time, the node density is found as a function of the system/protocol parameters.

D. Dardari, A. Conti, R. Verdone (2004). Process Estimation through Self-Organizing Collaborative Wireless Sensor Network. PISCATAWAY, NJ : IEEE.

Process Estimation through Self-Organizing Collaborative Wireless Sensor Network

DARDARI, DAVIDE;CONTI, ANDREA;VERDONE, ROBERTO;
2004

Abstract

An analytical framework for the performance evaluation of a dense energy-efficient wireless sensor network (WSN), enabling distributed collaborative environment monitoring, is developed. We address the estimation of a target multidimensional process by means of samples captured by nodes randomly and uniformly distributed and transmitted to a collector through a self-organizing clustered network. The estimation in the presence and in the absence of collaborative signal processing with different types of data interpolators are compared in terms of both process estimation error and network life-time. Our analytical model, aimed at providing useful information for WSN design, takes many aspects into account, such as distance-dependent path loss and shadowing, energy consumption, information routing, process estimation quality, node density, transmission protocol and system parameters. As an example result, fixing requirements on estimation errors and network life-time, the node density is found as a function of the system/protocol parameters.
2004
IEEE Globecom 2004 - Wireless Communications, Networks, and Systems
3193
3199
D. Dardari, A. Conti, R. Verdone (2004). Process Estimation through Self-Organizing Collaborative Wireless Sensor Network. PISCATAWAY, NJ : IEEE.
D. Dardari; A. Conti; R. Verdone
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/16874
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact