Over the last few years many studies have been carried out in Italy to identify reliable small area labour force indicators. Considering the rotated sample design of the Italian Labour Force Survey, the aim of this work is to derive a small area estimator which “borrows strength” from individual temporal correlation, as well as from related areas. Two small area estimators are derived as extensions of an estimation strategies proposed by Fuller (1990) for partial overlap samples. A simulation study is carried out to evaluate the gain in efficiency provided by our solutions. Results obtained for different levels of autocorrelation between repeated measurements on the same outcome and different population settings show that these estimators are always more reliable than the traditional composite one, and in some circumstances they are extremely advantageous.

M.R. Ferrante, S. Pacei (2004). Small Area Estimation for Longitudinal Surveys. STATISTICAL METHODS & APPLICATIONS, 13, 327-340.

Small Area Estimation for Longitudinal Surveys

FERRANTE, MARIA;PACEI, SILVIA
2004

Abstract

Over the last few years many studies have been carried out in Italy to identify reliable small area labour force indicators. Considering the rotated sample design of the Italian Labour Force Survey, the aim of this work is to derive a small area estimator which “borrows strength” from individual temporal correlation, as well as from related areas. Two small area estimators are derived as extensions of an estimation strategies proposed by Fuller (1990) for partial overlap samples. A simulation study is carried out to evaluate the gain in efficiency provided by our solutions. Results obtained for different levels of autocorrelation between repeated measurements on the same outcome and different population settings show that these estimators are always more reliable than the traditional composite one, and in some circumstances they are extremely advantageous.
2004
M.R. Ferrante, S. Pacei (2004). Small Area Estimation for Longitudinal Surveys. STATISTICAL METHODS & APPLICATIONS, 13, 327-340.
M.R. Ferrante; S. Pacei
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/16796
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact