Abstract: Objective: To evaluate the effect of abrading before and after sintering using alumina-based abrasives on the surface of yttria-tetragonal zirconia polycrystals. Particular attention was paid to the amount of surface stress-assisted phase transformation (tetragonal -> monocliwmonoclinic)andthepresenceofmicrocracks. Methods: Pre-sintered zirconia ceramic specimens (ZirCAD; Ivoclar Vivadent) were first surface-ground flat with #600-800-1000-grit SiC paper. They were then surface-treated with different grain size abrasives before and after the sintering step. Samples that underwent no surface treatment were used as controls. For each condition, eight specimens were prepared. The physical/mechanical characteristics of zirconia material were determined by measuring density, porosity, grain size, hardness, and fracture toughness. The effects of surface treatments were assessed by surface roughness measurements, quantitative X-ray diffraction analysis, and scanning electron microscopy. Results: With increased dimensions of the abrasive particles, the abraded surfaces of zirconia specimens exhibited a widespread system of microcracks and an increased monoclinic zirconia quantity. These structural changes likely affect the aging of the material during its clinical service.
Monaco C, Tucci A, Esposito L, Scotti R (2013). Microstructural changes produced by abrading Y-TZP in presintered and sintered conditions. JOURNAL OF DENTISTRY, 41, 121-126 [10.1016/j.jdent.2012.06.009].
Microstructural changes produced by abrading Y-TZP in presintered and sintered conditions.
MONACO, CARLO;SCOTTI, ROBERTO
2013
Abstract
Abstract: Objective: To evaluate the effect of abrading before and after sintering using alumina-based abrasives on the surface of yttria-tetragonal zirconia polycrystals. Particular attention was paid to the amount of surface stress-assisted phase transformation (tetragonal -> monocliwmonoclinic)andthepresenceofmicrocracks. Methods: Pre-sintered zirconia ceramic specimens (ZirCAD; Ivoclar Vivadent) were first surface-ground flat with #600-800-1000-grit SiC paper. They were then surface-treated with different grain size abrasives before and after the sintering step. Samples that underwent no surface treatment were used as controls. For each condition, eight specimens were prepared. The physical/mechanical characteristics of zirconia material were determined by measuring density, porosity, grain size, hardness, and fracture toughness. The effects of surface treatments were assessed by surface roughness measurements, quantitative X-ray diffraction analysis, and scanning electron microscopy. Results: With increased dimensions of the abrasive particles, the abraded surfaces of zirconia specimens exhibited a widespread system of microcracks and an increased monoclinic zirconia quantity. These structural changes likely affect the aging of the material during its clinical service.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.